PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Maximization of generated electric power in the TEG module at various heat exchange conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermoelectric generators using the Seebeck effect to generate electricity are increasingly used in various areas of human activity, especially in cases where a cheap high-temperature heat source is available. Despite many advantages, TEG generators have one major disadvantage: very low efficiency of heat conversion into electrical power which strongly depends on the applied load resistance. There is a maximum of generated power between the short and the open circuit in which it is zero. That is why optimization of TEG modules is particularly important. In this paper a method of maximization of generated power in a single TEG module is presented for two cases. The first case concerns a problem with fixed heat flux flow into the hot side of the module whereas the second one concerns a problem with fixed heat transfer parameters in hot heat exchanger i.e. supply gas temperature and heat transfer coefficient. A number of optimization results performed for various values of these parameters are presented and discussed.
Rocznik
Strony
277–--291
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Anatychuk L.I., Kuz R.V., Rozver Y.Y., 2011. Efficiency of thermoelectric recuperators of the exhaust gas Energy of internal combustion engines. 9th European Conference on Thermoelectrics (ECT’11), 28–30 September 2011, Thessaloniki, Greece.
  • 2. Chen L., Cao D.,Yi H., Peng F.Z., 2008. Modeling and power conditioning for thermoelectric generation. 2008 IEEE Power Electronics Specialists Conference, 15–19 June 2008, Rhodes, Greece. DOI: 10.1109/PESC.2008.4592076.
  • 3. Chen M., Lund H., Rosendahl L.A., Condra T.J., 2010. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today’s CHP systems. Appl. Energy, 87, 1231–1238. DOI: 10.1016/j.apenergy.2009.06.009.
  • 4. Crane D., LaGrandeur J., Jovovic V., Ranalli M., Adldinger M., Poliquin E., Dean J., Kossakovski D., Mazar B., Maranville C., 2012. TEG on-vehicle performance and model validation and what it means for further TEG development. J. Electron. Mater., 42, 1582–1591. DOI: 10.1007/s11664-012-2327-8.
  • 5. Elefsiniotis A., Kokorakis N., Becker T., Schmid U., 2014. A thermoelectric-based energy harvesting module with extended operational temperature range for powering autonomous wireless sensor nodes in aircraft. Sens. Actuators, A, 206, 159–64. DOI: 10.1016/j.sna.2013.11.036.
  • 6. Ferrari M., Ferrari V., Guizzetti M., Marioli D., Taroni A., 2007. Characterization of thermoelectric modules for powering autonomous sensors. 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007, Warsaw, 1–6. DOI: 10.1109/IMTC.2007.379307.
  • 7. Gomez M., Reid R., Ohara B., Lee H., 2013. Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting. J. Appl. Phys., 113, 174908. DOI: 10.1063/1.4802668.
  • 8. Haidar J., Ghojel J., 2001. Waste heat recovery from the exhaust of low-power diesel engine using thermoelectric generators. Proceedings ICT2001. 20 International Conference on Thermoelectrics, 8–11 June 2001, Beijing, China. DOI: 10.1109/ICT.2001.979919.
  • 9. Hoang T.H., Vinogradov S.V., 2018. Research, development of the design and calculation of thermal and electrical parameters of the TEG for the ship M/V NSU Keystone. Journal of Physics: Conf. Series, 14th International Scientific and Technical Conference "Problems of energy systems and thermal power complexes", 30.10–1.11.2018, Saratov, Russian Federation. DOI: 10.1088/1742-6596/1111/1/012071.
  • 10. Kaibe H., Makino K., Kajihara T., Fujimoto S., Hachiuma H., 2011. Thermoelectric generating system attached to a carburizing furnace at Komatsu Ltd., Awazu Plant. AIP Conf. Proc., 1449, 524. DOI: 10.1063/1.4731609.
  • 11. Kim S., 2013. Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators. Appl. Energy, 102, 1458–1463. DOI: 10.1016/j.apenergy.2012.09.006.
  • 12. Kinsella C., O’Shaughnessy S., Deasy M., Duffy M., Robinson J., 2014. Battery charging considerations in small scale electricity generation from a thermoelectric module. Appl. Energy, 114, 80–90. DOI: 10.1016/j.apenergy. 2013.09.025.
  • 13. Kumar S., Heister S.D., Xu X., Salvador J.R., Meisner G.P., 2013. Thermoelectric generators for automotive waste heat recovery systems Part I: Numerical modeling and baseline model analysis. J. Electron. Mater., 42, 665–674. DOI: 10.1007/s11664-013-2471-9.
  • 14. Lineykin S., Ben-Yaakov S., 2007. Modeling and analysis of thermoelectric modules. IEEE Trans. Ind. Appl., 43, 505–12. DOI: 10.1109/TIA.2006.889813.
  • 15. Laird I., Lovatt H., Savvides N., Lu D., Agelidis V.G., 2008. Comparative study of maximum power point tracking algorithms for thermoelectric generators. 2008 Australian Universities Power Engineering Conference (AUPEC 08), 14–17 December 2008, Sydney, N.S.W., Australia.
  • 16. Mayer P., Ram R., 2006. Optimization of heat sink limited thermoelectric generators. Nanoscale Microscale
  • 17. Thermophys. Eng., 10, 143–155. DOI: 10.1080/10893950600643063.
  • 18. Min G., Yatim N.M., 2008. Variable thermal resistor based on self-powered Peltier effect. J. Phys. D: Appl. Phys., 41, 222001. DOI: 10.1088/0022-3727/41/22/222001.
  • 19. Montecucco A., Buckle J.R., Knox A.R., 2012. Solution to the 1-D unsteady heat conduction equation with internal Joule heat generation for thermoelectric devices. Appl. Therm. Eng., 35, 177–184. DOI: 10.1016/j.applthermaleng. 2011.10.026.
  • 20. Montecucco A., Siviter J., Knox A.R., 2015. Constant heat characterisation and geometrical optimisation of thermoelectric generators. Appl. Energy., 149, 248–258. DOI: 10.1016/j.apenergy.2015.03.120.
  • 21. Ramadass Y.K., Chandrakasan A.P., 2010. A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. 2010 IEEE International Solid-State Circuits Conference, San Francisco, CA, February 2010, 486–487. DOI: 10.1109/ISSCC.2010.5433835.
  • 22. Risse S., Zellbeck H., 2013. Close-coupled exhaust gas energy recovery in a gasoline engine. MTZ worldwide, 74, 54–61. DOI: 10.1007/s38313-013-0010-y.
  • 23. Suter C., Jovanovic Z., Steinfeld A., 2012. A 1 kWe thermoelectric stack for geothermal power generation – modeling and geometrical optimization. Appl. Energy, 99, 379–85. DOI: 10.1016/j.apenergy.2012.05.033.
  • 24. Rowe D., Min G., 1998. Evaluation of thermoelectric modules for power generation. J. Power Sources, 73, 193–8. DOI: 10.1016/S0378-7753(97)02801-2.
  • 25. Wang W., Cionca V., Wang N., Hayes M., O’Flynn B., O’Mathuna C., 2013. Thermoelectric energy harvesting for building energy management wireless sensor networks. Int. J. Distrib. Sens. Networks, 9, 6. DOI: 10.1155/2013/232438.
  • 26. Yu H., Li Y., Shang Y., Su B., 2008. Design and investigation of photovoltaic and thermoelectric hybrid power source for wireless sensor networks. 3rd IEEE International Conference onNano/Micro Engineered and Molecular Systems, Sanya, 2008, 196–201. DOI: 10.1109/NEMS.2008.4484317.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3798b8a0-acfa-4eb9-88ea-db5f5f73a63a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.