PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pelvis and thoracolumbar spine response in simulated under-body blast impacts and protective seat cushion design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to investigate the dynamic and biomechanical response of the pelvis and thoracolumbar spine in simulated under-body blast (UBB) impacts and design of protective seat cushion for thoracolumbar spine injuries. Methods: A wholebody FE (finite element) human body model in the anthropometry of Chinese 50th% adult male (named as C-HBM) was validated against existing PHMS (Postmortem Human Subjects) test data and employed to understand the dynamic and biomechanical response of the pelvis and thoracolumbar spine from FE simulations of UBB impacts. Then, the protective capability of different seat cushion designs for UBB pelvis and thoracolumbar injury risk was compared based on the predictions of the C-HBM. Results: The predicted spinal accelerations from the C-HUM are almost within the PHMS corridors. UBB impact combined with the effects from physiological curve of the human thoracolumbar spine and torso inertia leads to thoracolumbar spine anterior bending and axial compression, which results in stress concentration in the segments of T4–T8, T12–L1 and L4–L5. Foam seat cushion can effectively reduce the risk of thoracolumbar spine injury of armored vehicle occupants in UBB impacts, and the DO3 foam has better protective performance than ordinary foam, the 60 mm thick DO3 foam could reduce pelvic acceleration peak and DRIz value by 52.8% and 17.2%, respectively. Conclusions: UBB spinal injury risk is sensitive to the input load level, but reducing the pelvic acceleration peak only is not enough for protection of spinal UBB injury risk, control of torso inertia effect would be much helpful.
Rocznik
Strony
143--151
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China.
autor
  • School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China.
autor
  • School of Mechanical and Transportation Engineering, Hunan University, Changsha, China.
autor
  • School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China.
Bibliografia
  • [1] BAILEY A., CHIRSTOPHER J., BROZOSKI F., SALZAR R., Post mortem human surrogate injury response of the pelvis and lower extremities to simulated underbody blast, Ann. Biomed. Eng., 2015, 43 (8), 1907–1917.
  • [2] BELMONT P., GOODMAN G., ZACCHILLI M., POSNER M., EVANS C., OWENS B., Incidence and epidemiology of combat injuries sustained during “the surge” portion of operation Iraqi freedom by a U.S. army brigade combat team, J. Trauma, 2010, 68 (1), 204–210.
  • [3] COMSTOCK S., PANNELL D., TALBOT M., COMPTON L., WITHERS N., TIEN H., Spinal injuries after improvised explosive device incidents: implications for tactical combat casualty care, J. Trauma, 2011, 71 (5, Suppl. 1), S413–17.
  • [4] DOOLEY C., WESTER B., WING I., VOO L., ARMIGER R., MERKLE A., Response of the thoracolumbar vertebral bodies to high-rate compressive loading, Biomed. Sci. Instrum., 2013, 49, 172–179.
  • [5] HUANG J., HUANG C., MO F., Analysis of foot-ankle-leg injuries in various under-foot impact loading environments with a human active lower limb model, J. Biomed. Eng., 2022, 144 (1), 011012.
  • [6] LI G., MA H., GUAN T., GAO G., Predicting safer vehicle front-end shapes for pedestrian lower limb protection via a numerical optimization framework, Int. J. Auto. Tech.-Kor., 2020, 21 (3), 749–756.
  • [7] LI G., MENG H., LIU J., ZOU D., LI K., A novel modeling approach for finite element human body models with high computational efficiency and stability: application in pedestrian safety analysis, Acta Bioeng. Biomech., 2021, 21(2), 21–30.
  • [8] LIU X.R., TIAN X.G., LU T., LIANG B., Sandwich plates with functionally graded metallic foam cores subjected to air blast loading, Int. J. Mech. Sci., 2014, 84, 61–72.
  • [9] LSTC. LS-DYNA keyword user’s manual, version 971. Liver+more Software Technology Corporation Livermore, United States of America. 2007.
  • [10] MA H., MAO Z., LI G., YAN L., MO F., Could an isolated human body lower limb model predict leg biomechanical response of Chinese pedestrians in vehicle collisions?, Acta Bioeng. Biomech., 2020, 22 (3), 117–129.
  • [11] MO F., LI F., BEHR M., XIAO Z., ZHANG G., DU X., A lower limb-pelvis finite element model with 3D active muscles, Ann. Biomed. Eng., 2018, 46, 86–96.
  • [12] MO F., LUO D., TAN Z., SHANG B., ZHOU D., A human active lower limb model for Chinese pedestrian safety evaluation, J. Bionic. Eng., 2021, 18 (4), 872–886.
  • [13] OTT K., DREWRY D., LUONGO M., ANDRIST J., ARMIGER R., TITUS J., DEMETROPOULOS C., Comparison of human surrogate responses in underbody blast loading conditions, J. Biomech. Eng., 2020, 142 (9), 091910.
  • [14] PANDELANI T., CARPANEN D., MASOUROS S., Evaluating pelvis response during simulated underbody blast loading, J. Biomech. Eng., 2024, 146 (2), 024501.
  • [15] POSSELY D., BLAIR J., FREEDMAN B., SCHOENFELD A., LEHMAN R., HSU J., The effect of vehicle protection on spine injuries in military conflict, J. Spine, 2012, 12, 843–848.
  • [16] RUPP J., ZASECK L., MILLER C., BONIFAS A., REED M., SHERMAN D., CAVANAUGH J., OTT K., DEMETROPOULOS C., Whole body PMHS response in injurious experimental accelerative loading events, Ann. Biomed. Eng., 2021, 49 (11), 3031–3045.
  • [17] SCHOENFELD A., GOODMAN G., BELMONT Jr, P., Characterization of combat-related spinal injuries sustained by a U.S. army brigade combat team during operation Iraqi freedom, J. Spine, 2012, 12, 771–776.
  • [18] SOMASUNDARAM K., SHERMAN D., BEGEMAN P., CIARELLI T., MCCARTY S., KOCHKODAN J., DEMETROPOULOS C., CAVANAUGH J., Mechanisms and timing of injury to the thoracic, lumbar and sacral spine in simulated underbody blast PMHS impact tests, J. Mech. Behav. Biomed. Mater., 2021, 116, 104271.
  • [19] SOMASUNDARAM K., ZHANG L., SHERMAN D., BEGEMAN P., LYU D., CAVANAUGH J., Evaluating thoracolumbar spine response during simulated underbody blast impact using a total human body finite element model, J. Mech. Behav. Biomed. Mater., 2019, 100, 103398.
  • [20] STECH E., PAYNE P., Dynamic models of the human body, AMRL-TR-66, l–9, 1969.
  • [21] YOGANANDAN N., HUMM J., BAISDEN J., MOORE J., PINTAR F., WASSICK M., BARNES D., LOFTIS K., Temporal corridors of forces and moments, and injuries to pelvis-lumbar spine in vertical impact simulating underbody blast, J. Biomech., 2023, 150, 111490.
  • [22] YOGANANDAN N., MOORE J., ARUN M., PINTAR F., Dynamic responses of intact post mortem human surrogates from inferior-to-superior loading at the pelvis, Stapp Car Crash J., 2014, 58, 123–143.
  • [23] WEAVER C., MERKLE A., STITZEL J., Pelvic response of a total human body finite element model during simulated under body blast impacts, ASCE-ASME J. Risk U. B., 2021, 7 (2), 021004.
  • [24] WU T., KIM T., BOLLAPRAGADA V., POULARD D., CHEN H., Evaluation of biofidelity of THUMS pedestrian model under a whole – body impact conditions with a generic sedan buck, Traffic Inj. Prev., 2017, 18, S148–S154.
  • [25] ZHANG J., MERKLE A., CARNEAL C., ARMIGER R., ROBERTS J., Effects of torso-borne mass and loading severity on early response of the lumbar spine under high-rate vertical loading, Proceedings of the IRCOBI Conference, 2013, 111–123.
  • [26] ZHANG N., ZHAO J., Study of compression-related lumbar spine fracture criteria using a full body FE human model, Proceeding of the 23rd International Technical Conference on the Enhanced Safety of Vehicles (ESV), Seoul, Korea, 2013, Paper No. 13-0288.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-379125d2-d758-4318-83d3-df85dfe0a6bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.