Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper focuses on applying a Quantum Inspired Evolutionary Algorithm to achieve the optimization of 2D material containing two phases, 2H and 1T, of Molybdenum Disulphide (MoS2 ). The goal of the optimization is to obtain a nanostructure with tailored mechanical properties. The design variables describe the shape of inclusion made from phase 1T in the 2H unit cell. The modification of the size of the inclusions leads to changes in the mechanical properties. The problem is solved with the use of computed mechanical properties on the basis of the Molecular Statics approach with ReaxFF potentials.
Wydawca
Czasopismo
Rocznik
Tom
Strony
67--78
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
- Silesian University of Technology, Gliwice, Poland
autor
- AGH University of Science and Technology, Krakow, Poland
Bibliografia
- Aktulga, H.M., Fogarty, J.C., Pandit, S.A., & Grama, A.Y. (2012). Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel Computing, 38(4–5), 245–259. https://doi.org/10.1016/j.parco.2011.08.005.
- Burczynski, T., Mrozek, A., Gorski, R., & Kus, W. (2010). Molecular statics coupled with the subregion boundary element method in multiscale analysis. International Journal for Multiscale Computational Engineering, 8(3), 319–330. https://doi.org/10.1615/IntJMultCompEng.v8.i3.70.
- Burczyński, T., Kuś, W., Beluch, W., Długosz A., Poteralski, A. & Szczepanik, M. (2020). Intelligent Computing in Optimal Design. Springer Cham, “Solid Mechanics and Its Applications” 261.
- Burczyński, T., Pietrzyk, M., Kuś, W., Madej, Ł., Mrozek, A., & Rauch. Ł (2022). Multiscale Modelling and Optimisation of Materials and Structures. Wiley.
- Chenoweth, K., Duin, A.C.T. van, & Goddard, W.A. (2008). ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. The Journal of Physical Chemistry A, 112, 1040–1053. https://doi.org/10.1021/jp709896w.
- Cranford, S.W., Buehler, M.J. (2011). Mechanical properties of graphyne. Carbon, 49(13), 4111–4121. https://doi.org/10.1016/ j.carbon.2011.05.024.
- Duin, A.C.T., van, Dasgupta, S., Lorant, F., & Goddard, W.A. (2001). ReaxFF: A Reactive Force Field for Hydrocarbons. The Journal of Physical Chemistry A, 105(41), 9396–9409. https://doi.org/10.1021/jp004368u.
- Enyashin, A.N., Ivanovskii, A.L. (2011). Graphene allotropes. Physica Status Solidi B, 248(8), 1879–1883. https://doi.org/10.1002/pssb.201046583.
- Han, K.H., & Kim, J.H. (2002). Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation, 6(6), 580–593. https://www.doi.org/10.1109/TEVC.2002.804320.
- Jiang, J.W. (2015). Graphene versus MoS2: a short review. Frontiers of Physics, 10, 106801. https://doi.org/10.1007/s11467- 015-0459-z.
- Jiang, J.W., Park, H.S., & Rabczuk, T. (2013). Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger–Weber parametrization, mechanical properties, and thermal conductivity. Journal of Applied Physics, 114, 064307. https://doi.org/10.1063/1.4818414.
- Kandemir, A., Yapicioglu, H., Kinaci, A., Çağın, T., & Sevik, C. (2016). Thermal transport properties of MoS2 and MoSe2 monolayers. Nanotechnology, 27, 055703. https://www.doi.org/10.1088/0957-4484/27/5/055703.
- Kuś, W., Mrozek, A., Burczyński, T. (2016). Memetic optimization of graphene-like materials on Intel PHI coprocessor. In L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada (Eds.), Artificial Intelligence and Soft Computing. 15th International Conference, ICAISC 2016, Zakopane, Poland, June 12–16, 2016, Proceedings, Part I (pp. 401–410). Springer Cham, “Lecture Notes in Computer Science” 9692. https://doi.org/10.1007/978-3-319-39378-0_35.
- Kuś, W., Akhter, M.J., & Burczyński, T. (2022). Optimization of monolayer MoS2 with prescribed mechanical properties. Materials, 15(8), 1–9. https://www.doi.org/10.3390/ma15082812.
- Lahoz-Beltra, R. (2016). Quantum genetic algorithms for computer scientists. Computers, 5(24), 1–24. https://doi.org/10.3390/computers5040024.
- Li, H., Contryman, A.W., Qian, X., Ardakani, S.M., Gong, Y., Wang, X., Weisse, J.M., Lee, C.H., Zhao, J., Ajayan, P.M., Li, J., Manoharan, H.C., Zheng, X. (2015). Optoelectronic crystal of artificial atoms in strain – textured molybdenum disulphide. Nature Communications, 6, 1–6. https://www.doi.org/10.1038/ncomms8381.
- Liang, T., Phillpot, S.R., & Sinnot, S.R. (2009). Parametrization of a reactive many-body potential for Mo–S systems. Physical Review B, 79(24), 245110. https://doi.org/10.1103/PhysRevB.79.245110.
- Liang, T., Phillpot, S.R., & Sinnot, S.R. (2012). Erratum: Parametrization of a reactive many-body potential for Mo–S systems. Physical Review B, 85(19), 199903(E). https://doi.org/10.1103/PhysRevB.85.199903.
- Lin, Y.C., Dumcenco, D.O., Huang, Y.S., & Suenaga K. (2014). Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nature Nanotechnology, 9, 391–396. https://www.doi.org/10.1038/nnano.2014.64.
- Maździarz, M., Mrozek, A., Kuś, W., Burczyński, T. (2018). Anisotropic-cyclicgraphene: a new two-dimensional semiconducting carbon allotrope. Materials, 11(3), 1–12. https://doi.org/10.3390/ma11030432.
- Mortazavi, B., Ostadhossein, A., Rabczuk, T., & Duin, A.C.T, van (2016). Mechanical response of all-MoS2 single-layer heterostructures: a ReaxFF investigation. Physical Chemistry Chemical Physics, 18(34), 23695–23701. https://doi.org/10.1039/C6CP03612K.
- Mrozek A. (2019). Basic mechanical properties of 2H and 1T single-layer molybdenum disulfide polymorphs. A short comparison of various atomic potentials. International Journal for Multiscale Computational Engineering, 17(3), 339–359. https://www.doi.org/10.1615/IntJMultCompEng.2019029100.
- Mrozek, A., Burczyński, T. (2013). Examination of mechanical properties of graphene allotropes by means of computer simulation. Computer Assisted Methods in Engineering and Science, 20(4), 309–323.
- Mrozek, A., Kuś, W., Burczyński, T. (2010). Searching of stable configurations of nanostructures using computational intelligence methods. Czasopismo Techniczne. Mechanika – Technical Transactions. Mechanics, 107(20), 85–97.
- Mrozek, A., Kuś, W., Burczyński, T. (2015). Nano level optimization of graphene allotropes by means of a hybrid parallel evolutionary algorithm. Computational Materials Science, 106, 161–169. https://doi.org/10.1016/j.commatsci.2015.05.002.
- Nakano, A. (1997). Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics. Computer Physics Communications, 104(1–3), 59–69. https://doi.org/10.1016/S0010-4655(97)00041-6.
- Narita, N., Nagai, S., Suzuki, S., & Nakao, K. (2000). Electronic structure of three-dimensional graphyne. Physical Review B, 62(16), 11146. https://doi.org/10.1103/PhysRevB.62.11146.
- Ostadhossein, A., Rahnamoun, A., Wang, Y., Zhao, P., Zhang, S., Crespi, V.H, & Duin, A.C.T., van (2017). ReaxFF reactive force-field study of molybdenum disulfide (MoS2). The Journal of Physical Chemistry Letters, 8(3), 631–640. https://doi.org/10.1021/acs.jpclett.6b02902.
- Park, H., Fellinger, M.R., Lenosky, T.J., Tipton, W.W., Trinkle, D.R., Rudin, S.P., Woodward, Ch., Wilkins, J.W., Hennig, R.G. (2012). Ab initio based empirical potential used to study the mechanical properties of molybdenum. Physical Review B, 85(21), 214121. https://doi.org/10.1103/PhysRevB.85.214121.
- Peng, Q., Ji, W., De, S. (2012). Mechanical properties of graphyne monolayers: a first-principles study. Physical Chemistry Chemical Physics, 14(38), 13385–13391. https://doi.org/10.1039/C2CP42387A.
- Shen, S., & Atluri, S.N. (2004). Atomic-level stress calculation and continuum-molecular system equivalence. CMES – Computer Modeling in Engineering & Sciences, 6(1), 91–104. https://doi.org/10.3970/cmes.2004.006.091.
- Silveira, L.R., da, Transcheit, R., & Vellasco, M.M.B.R. (2017). Quantum inspired evolutionary algorithm for ordering problems. Expert Systems with Applications, 67, 71–83. https://doi.org/10.1016/j.eswa.2016.08.067.
- Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M., Crozier, P.S., Veld, P.J., in ‘t, Kohlmeyer, A., Moore, S.G., Nguyen, T.D., Shan, R., Stevens, M.J., Tranchida, J., Trott, C., & Plimpton, S.J. (2022). LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171. https://doi.org/10.1016/j.cpc.2021.108171.
- Wang, Y., Lv, J., Zhu, L., Ma, Y. (2010). Crystal structure prediction via particle-swarm optimization. Physical Review B, 82(9), 094116. https://doi.org/10.1103/PhysRevB.82.094116.
- Xiong, S., & Cao, G. (2015). Molecular dynamics simulations of mnechanical properties of monolayer MoS2. Nanotechnology, 26(18), 185705. https://doi.org/10.1088/0957-4484/26/18/185705.
- Zhang, G. (2011). Quantum-inspired evolutionary algorithms: A survey and empirical study. Journal of Heuristics, 17(3), 303–351. https://doi.org/10.1007/s10732-010-9136-0.
- Zhou, M. (2003). A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proceedings of the Royal Society A, 459(2037), 2347–2392. https://doi.org/10.1098/rspa.2003.1127.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3787b91f-5c09-49d9-b222-1a4ce88103ae