PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing energy use efficiency of wireless sensor networks using newly proposed fault tolerance multipath routing protocol (MRP-FT)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study compared the newly proposed fault tolerance multipath routing protocol (MRP-FT) under the particle swarm optimization-based fault tolerant routing (PSO-FT) technique to the existing low-energy adaptive clustering hierarchy (LEACH) protocol applied in different combinations of inter-node numbers (N) ranging from 100 to 300 nodes (N100−300) in wireless sensor networks (WSNs) with different area sizes (Xm × Ym) of 100–1000 m2 (W SN100−1000) to enhance energy efficiency and reliability of WSNs. The implementation of MRP-FT protocol significantly decreased the packet overhead by 36.0–69.5%, delay by 40.4–52.9%, and energy consumption by 35.9–52.9%, while increasing reliability by 97.0–104.1%, compared to the existing LEACH protocol. For instance, at N100−200, the LEACH simulated packet overhead increased from 76-89 packets at t = 500 s with an increase in WSN size from 100 to 1000. At N300 + W SN100, the packet overhead showed the highest decrease of ca. 69.5% with MRP-FT over the LEACH protocol. The implementation of the MRP-FT protocol reduced energy consumption by 35–123 J over the LEACH protocol.
Rocznik
Strony
143--164
Opis fizyczny
Bibliogr. 80 poz., rys.
Twórcy
  • Department of Electronics and Communication Engineering, Yadavindra Department of Enginnering, Talwandi Sabo, Bathinda, Punjab, India, 151 001
Bibliografia
  • [1] Abbasi, A. A., and Younis, M. A survey on clustering algorithms for wireless sensor networks. Computer Communications 30, 14-15 (2007), 2826–2841.
  • [2] Aziz, A. A., Sekercioglu, Y. A., Fitzpatrick, P., and Ivanovich, M. A survey on distributed topology control techniques for extending the lifetime of battery powered wireless sensor networks. IEEE Communications Surveys & Tutorials 15, 1 (2013), 121–144.
  • [3] Agrawal, R., Faujdar, N., Romero, C. A. T., Sharma, O., Abdulsahib, G. M., Khalaf, O. I., Mansoor, R. F., and Ghoneim, O. A. Classification and comparison of ad hoc networks: A review. Egyptian Informatics Journal 24, 1 (2023), 1–25.
  • [4] Ajjaj, S., El Houssaini, S., Hain, M., and El Houssaini, M.-A. Performance assessment and modeling of routing protocol in vehicular ad hoc networks using statistical design of experiments methodology: a comprehensive study. Applied System Innovation 5, 1 (2022), 19.
  • [5] Akyildiz, I. F., and Vuran, M. C. Wireless Sensor Networks. Wiley, 2010.
  • [6] Al-Karaki, J. N., and Kamal, A. E. Routing techniques in wireless sensor networks: a survey. IEEE Wireless Communications 11, 6 (2004), 6–28.
  • [7] Alrajeh, N. A., Alabed, M. S., and Elwahiby, M. S. Secure ant-based routing protocol for wireless sensor network. International Journal of Distributed Sensor Networks 9, 6 (2013), 326295.
  • [8] Amirthalingam, K., Anuradha V. Improved LEACH: A modified LEACH for wireless sensor network. In 2016 IEEE International Conference on Advances in Computer Applications (ICACA) (Coimbatore, India, 2016), IEEE, pp. 255–258.
  • [9] Anastasi, G., Conti, M., Di Francesco, M., and Passarella, A. Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks 7, 3 (2009), 537–568.
  • [10] Arora, V. K., Sharma, V., and Sachdeva, M. A survey on LEACH and other’s routing protocols in wireless sensor network. Optik 127, 16 (2016), 6590–6600.
  • [11] Asha, P., Natrayan, L., Geetha, B. T., Beulah, J. R., Sumathy, R., Varalakshmi, G., and Neelakandan, S. IoT enabled environmental toxicology for air pollution monitoring using AI techniques. Environmental Research 205 (2022), 112574.
  • [12] Bai, W. G., Wang, H., Shen, X., Zhao, R., and Zhang, Y. Minimum delay multipath routing based on TDMA for underwater acoustic sensor networks. International Journal of Distributed Sensor Networks 12, 2 (2016), 1394340.
  • [13] Bai, X., Yun, Z., Xuan, D., Lai, T.-h., and Jia, W. Deploying four-connectivity and full-coverage wireless sensor network. In IEEE INFOCOM 2008-The 27th Conference on Computer Communications (Phoenix, AZ, USA, 2008), IEEE, pp. 296–300.
  • [14] Behera, T. M., Samal, U. C., Mohapatra, S. K., Khan, M. S., Appasani, B., Bizon, N., and Thounthong, P. Energy-efficient routing protocols for wireless sensor networks: Architectures, strategies, and performance. Electronics 11, 15 (2022), 282.
  • [15] Bekal, P., Kumar, P., Mane, P. R., and Prabhu, G. A comprehensive review of energy efficient routing protocols for query driven wireless sensor networks. F1000Research 12 (2023), 644.
  • [16] Bharti, A., Devi, C., and Bhatia, V. Enhanced energy efficient LEACH (EEE-LEACH) algorithm using MIMO for wireless sensor network. In 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (Madurai, India, 2015), IEEE, pp. 1–4.
  • [17] Biradar, R. V., Sawant, S. R., Mudholkar, R. R., and Patil, V. C. Multihop routing in self-organizing wireless sensor networks. International Journal of Computer Science Issues (IJCSI) 8, 1 (2011), 155–164.
  • [18] Chanak, P., and Banerjee, I. Energy efficient fault-tolerant multipath routing scheme for wireless sensor networks. The Journal of China Universities of Posts and Telecommunications 20, 6 (2013), 42–48.
  • [19] Chen, C., Wang, L.-C., and Yu, C.-M. D2CRP: A novel distributed 2-hop cluster routing protocol for wireless sensor networks. IEEE Internet of Things Journal 9, 20 (2022), 19575–19588.
  • [20] Chen, Y., and Nasser, N. Enabling QoS multipath routing protocol for wireless sensor networks. In 2008 IEEE International Conference on Communications (Beijing, China, 2008), IEEE, pp. 2421–2425.
  • [21] Cheng, D., Ding, X., Zeng, J., and Yang, N. Hybrid k-means algorithm and genetic algorithm for cluster analysis. TELKOMNIKA Indonesian Journal of Electrical Engineering 12, 4 (2014), 2924–2935.
  • [22] Felemban, E., Lee, C.-G., and Ekici, E. MMSPEED: multipath Multi-SPEED protocol for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE Transactions on Mobile Computing 5, 6 (2006), 738–754.
  • [23] Fu, X., Fortino, G., Li, W., Pace, P., and Yang, Y. WSN-assisted opportunistic network for low-latency message forwarding in sparse settings. Future Generation Computer Systems 91 (2019), 223–237.
  • [24] Fu, X., Fortino, G., Pace, P., Aloi, G., and Li, W. Environment-fusion multipath routing protocol for wireless sensor networks. Information Fusion 53 (2020), 4–19.
  • [25] Ganesan, D., Govindan, R., Shenker, S., and Estrin, D. Highly-resilient, energy-efficient multipath routing in wireless sensor networks. ACM SIGMOBILE Mobile Computing and Communications Review 5, 4 (2001), 11–25.
  • [26] Gao, Y., Xiao, F., Liu, J., and Wang, R. Distributed soft fault detection for interval type-2 fuzzy-model-based stochastic systems with wireless sensor networks. IEEE Transactions on Industrial Informatics 15, 1 (2018), 334–347.
  • [27] Gope, P., Das, A. K., Kumar, N., and Cheng, Y. Lightweight and physically secure anonymous mutual authentication protocol for real-time data access in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics 15, 9 (2019), 4957–4968.
  • [28] Hadjidj, A., Bouabdallah, A., and Challal, Y. HDMRP: An efficient fault-tolerant multipath routing protocol for heterogeneous wireless sensor networks. In Quality, Reliability, Security and Robustness in Heterogeneous Networks: 7th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, QShine 2010, and Dedicated Short Range Communications Workshop, DSRC 2010, Houston, TX, USA, November 17-19, 2010, Revised Selected Papers 7 (2012), X. Zhang and D. Qiao, Eds., Springer, pp. 469–482.
  • [29] Hajiee, M., Fartash, M., and Osati Eraghi, N. An energy-aware trust and opportunity based routing algorithm in wireless sensor networks using multipath routes technique. Neural Processing Letters 53, 4 (2021), 2829–2852.
  • [30] Hammoudeh, M., and Newman, R. Adaptive routing in wireless sensor networks: QoS optimisation for enhanced application performance. Information Fusion 22 (2015), 3–15.
  • [31] Han, G., Jiang, J., Shu, L., Niu, J., and Chao, H.-C. Management and applications of trust in wireless sensor networks: A survey. Journal of Computer and System Sciences 80, 3 (2014), 602–617.
  • [32] Haneef, M., and Deng, Z. Comparative analysis of classical routing protocol LEACH and its updated variants that improved network life time by addressing shortcomings in wireless sensor network. In 2011 Seventh International Conference on Mobile Ad-hoc and Sensor Networks (Beijing, China, 2011), IEEE, pp. 361–363.
  • [33] Hani, R. M. B., and Ijjeh, A. A. A survey on leach-based energy aware protocols for wireless sensor networks. Journal of Communications 8, 3 (2013), 192–206.
  • [34] Heinzelman, W. B. Application-specific protocol architectures for wireless networks. PhD thesis, Massachusetts Institute of Technology, 2000.
  • [35] Heinzelman, W. R., Chandrakasan, A., and Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences (Maui, HI, USA, 2000), IEEE, pp. 1–10.
  • [36] Huang, G. M., Tao, W. J., Liu, P. S., and Liu, S. Y. Multipath ring routing in wireless sensor networks. Applied Mechanics and Materials 347 (2013), 701–705.
  • [37] Jain, D. K., Tyagi, S. K. S., Neelakandan, S., Prakash, M., and Natrayan, L. Metaheuristic optimization-based resource allocation technique for cybertwin-driven 6G on IoE environment. IEEE Transactions on Industrial Informatics 18, 7 (2022), 4884–4892.
  • [38] Jain, S., Pattanaik, K. K., Verma, R. K., Bharti, S., and Shukla, A. Delay-aware green routing for mobile-sink-based wireless sensor networks. IEEE Internet of Things Journal 8, 6 (2021), 4882–4892.
  • [39] Kaliappan, S., Mohanamurugan, S., Nagarajan, P. K., and Kamal Ray, M. D., Analysis of an innovative connecting rod by using finite element method. Taga Journal of Graphic Technology 14, 2018 (2018), 1147–1152.
  • [40] Kanimozhi, G., Natrayan, L., Angalaeswari, S., and Paramasivam, P. An effective charger for plug-in hybrid electric vehicles (PHEV) with an enhanced PFC rectifier and ZVS-ZCS DC/DC high-frequency converter. Journal of Advanced Transportation 2022 (2022), 7840102.
  • [41] Kaur, A., and Grover, A. LEACH and extended LEACH protocols in wireless sensor network - a survey. International Journal of Computer Applications 10, 116 (2015), 1–5.
  • [42] Kaur, G. Distributed energy efficient clustering (DEEC) protocols for enhancing energy efficiency and sensor lifespan in wireless sensor networks (WSNS). Turkish Journal of Computer and Mathematics Education 11, 3 (2020) 1378- 1384.
  • [43] Kaur, G. Energy efficient routing algorithms for scheduling distribution of cluster heads in wireless sensor networks (WSNS) – a review. International Journal of Engineering Science and Research Technology 8, 3 (2019), 268–270.
  • [44] Kaur, G. Evaluation of low energy adaptive clustering hierarchy (LEACH) protocols for enhancing energy use efficiency and lifespan of wireless sensor networks (WSNS). International Journal of Advanced Research in Engineering and Technology 10, 6 (2019), 499–520.
  • [45] Kaur, G. Performance analysis of multi-layered clustering network using fault tolerance multipath routing protocol (MRP-FT) in a wireless sensor network (WSN). Operations Research and Decisions 33, 1 (2023),75–92 .
  • [46] Kaur, H., and Kaur, G. Novel approach to reduce chances of fault in wireless sensor networks. International Journal of Research in Electrical and Computer Engineering 6, 3 (2018), 2224–2228.
  • [47] Kaur, M., and Kaur, G. Design of uplink and downlink MIMO cognitive radio network with MATLAB. International Journal of Advanced Research in Science and Engineering 6, 10 (2017), 353-363.
  • [48] Kaur, M., and Kaur, G. A review on MIMO cognitive radio user selection network using multiple CBD and primary channel state information International Journal of Advanced Research in Science and Engineering 6, 8 (2017), 1114-1122.
  • [49] Kavra, R., Gupta, A., and Kansal, S. Systematic study of topology control methods and routing techniques in wireless sensor networks. Peer-to-Peer Networking and Applications 15, 4 (2022), 1862–1922.
  • [50] Kodali, R. K., Bhandari, and S., Boppana, L. Energy efficient m-level LEACH protocol. In 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), (Kochi, India, 2015), IEEE, pp. 973–979.
  • [51] Kumar, D. P., Amgoth, T., and Annavarapu, C. S. R. Machine learning algorithms for wireless sensor networks: A survey. Information Fusion 49 (2019), 1–25.
  • [52] Lee, E. K., Viswanathan, H., and Pompili, D. Rescuenet: Reinforcement-learning-based communication framework for emergency networking. Computer Networks 98 (2016), 14–28.
  • [53] Li, J., and Huo, J. Uneven clustering routing algorithm based on optimal clustering for wireless sensor networks. Journal of Communications 11, 2 (2016), 132–142.
  • [54] Li, S., and Wu, Z. Node-disjoint parallel multi-path routing in wireless sensor networks. In Second International Conference on Embedded Software and Systems (ICESS’05) (Xi’an, China, 2005), IEEE, pp. 1–6.
  • [55] Lu, Y. M., and Wong, V. W. S. An energy-efficient multipath routing protocol for wireless sensor networks. In IEEE Vehicular Technology Conference (Montreal, QC, Canada, 2006), IEEE, pp. 1–5.
  • [56] Ma, W., Yan, F., Zuo, X., Ren, L., Xia, W., and Shen, L. Coverage hole detection algorithm without location information in wireless sensor networks. In 2017 3rd IEEE International Conference on Computer and Communications (ICCC), (Chengdu, China, 2017), IEEE, pp. 357–361.
  • [57] Magesh S., Niveditha V. R., Rajakumar P. S., Radha R. S., and Natrayan L. Pervasive computing in the context of COVID-19 prediction with AI-based algorithms. International Journal of Pervasive Computing and Communications 16, 5 (2020), 477–487.
  • [58] Mahmood, D., Javaid, N., Mahmood, S., Qureshi, S., Memon, A. M., and Zaman, T. MODLEACH: A Variant of LEACH for WSNs. In 2013 Eighth International Conference on Broadband and Wireless Computing, Communication and Applications (Compiegne, France, 2013), IEEE, pp. 158–163.
  • [59] Malik, M., Joshi, A., and Sakya, G. Network lifetime improvement for WSN using machine learning. In 2021 7th International Conference on Signal Processing and Communication (ICSC) (Noida, India, 2021), IEEE, pp. 80–84.
  • [60] Mittal, M., De Prado, R. P., Kawai, Y., Nakajima, S., and Muñoz-Expósito, J. E. Machine learning techniques 164 G. Kaurfor energy efficiency and anomaly detection in hybrid wireless sensor networks. Energies 14, 11 (2021), 3125.
  • [61] Morrissey, P. J., Vunnava, K. S., Potts, J. N., Ehm, J. W., and Singh, R. P. Multi-path routing control for an encrypted tunnel, US Patent No. 9,755,953 B1, 5 September 2017.
  • [62] Mostafaei, H., Montieri, A., Persico, V., and Pescape, A. A sleep scheduling approach based on learning automata for WSN partialcoverage. Journal of Network and Computer Applications 80 (2017), 67–78.
  • [63] Murakami, T., Kohno, E., and Kakuda, Y. Radio overlapping reduced multipath routing method by utilizing control packet overhearing to counter eavesdropping on data packets for ad hoc networks. In 2015 Third International Symposium on Computing andNetworking (CANDAR) (Sapporo, Japan, 2015), IEEE, pp. 167–173.
  • [64] Nagarajan, K., Rajagopalan, A., Angalaeswari, S., Natrayan, L., Mammo, W. D. Combined economic emission dispatch of microgrid with the incorporation of renewable energy sources using improved mayfly optimization algorithm. Computational Intelligence and Neuroscience 2022 (2022), 461690.
  • [65] Naranjo, P. G. V., Shojafar, M., Mostafaei, H., Pooranian, Z., and Baccarelli, E. P-SEP: A prolong stable election routing algorithm for energy-limited heterogeneous fog-supported wireless sensor networks. The Journal of Supercomputing73 (2017), 733–755.
  • [66] Osseiran, A., Monserrat, J. F., and Marsch, P. 5G Mobile and Wireless Communications Technology. Cambridge University Press, 2016.
  • [67] Pantazis, N. A., Nikolidakis, S. A., and Vergados, D. D. Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials 15, 2 (2012), 551–591.
  • [68] Rao, N. S., and Rao, K. V. S. N. R. Wireless sensor network routing for life time maximization using ANFIS based decisionwith low power consumption. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, 2 (2021), 2893–2900.
  • [69] Samanta, M., and Banerjee, I. Optimal load distribution of cluster head in fault-tolerant wireless sensor network. In 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science (Bhopal, India, 2014), IEEE, pp. 1–7.
  • [70] Sendrayaperumal, A., Mahapatra, S., Parida, S. S., Surana, K., Balamurugan, P., Natrayan, L., and Paramasivam, P. Energy auditing for efficient planning and implementation in commercial and residential buildings. Advances in Civil Engineering 2021 (2021), 908568.
  • [71] Shaikh, F. K., and Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews 55 (2016), 1041–1054.
  • [72] Sharma, D., and Tomar, G. S. Comparative energy evaluation of LEACH protocol for monitoring soil parameter in wireless sensors network. In Materials Today: Proceedings, National Conference on Smart Materials: Energy and Environment for Smart Cities, NSES-2018, 28th February 2018, Gwalior, India , P. K. Mishra, M. G. Jain, S. C. Jani, D. Singh, and R. Sharma, Eds., Vol. 29, Part 2, (2020), pp. 381–396.
  • [73] Smiri, S., Boushaba, A., Abbou, A. B., Zahi, A., and Abbou, R. B. Implementation and QoS evaluation of geographical location-based routing protocols in vehicular ad-hoc networks. In WITS 2020: Proceedings of the 6th International Conference on Wireless Technologies, Embedded, and Intelligent Systems (Singapore 2022), S. Bennani, Y. Lakhrissi, G. Khaissidi, A. Mansouri, and Y. Khamlichi, Eds., vol. 745 of Lecture Notes in Electrical Engineering, Springer, pp. 515–526.
  • [74] Sony, C. T., Sangeetha, C. P., and Suriyakala, C. D. Multi-hop LEACH protocol with modified cluster head selection and TDMA schedule for wireless sensor networks. In 2015 Global Conference on Communication Technologies (GCCT) (Thuckalay, India, 2015), IEEE, pp. 539–543.
  • [75] Sundaram, P. S. S., Basker, N. H., and Natrayan, L. Smart clothes with bio-sensors for ecg monitoring. International Journal of Innovative Technology and Exploring Engineering 8, 4 (2019), 298–301.
  • [76] Taj, M. B. M., and Kbir, M. A. ICH-LEACH: An enhanced LEACH protocol for wireless sensor network. In International Conference on Advanced Communication Systems and Information Security (ACOSIS) (Marrakesh, Morocco, 2016), IEEE, pp. 1–5.
  • [77] Toor, A. S., and Jain, A. K. Energy aware cluster based multi-hop energy efficient routing protocol using multiple mobile nodes (MEACBM) in wireless sensor networks. AEU - International Journal of Electronics and Communications 102 (2019), 41–53.
  • [78] Xinhua, W., and Sheng, W. Performance comparison of LEACH and LEACH-C protocols by NS2. In 2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science (Hong Kong, China, 2010), IEEE,pp. 254–258.
  • [79] Yao, Y.-D., Li, X., Cui, Y.-P., Wang, J.-J., and Wang, C. Energy-efficient routing protocol based on multi-threshold segmentation in wireless sensors networks for precision agriculture. IEEE Sensors Journal 22, 7 (2022), 6216–6231.
  • [80] Zin, S. M., Anuar, N. B., Kiah, M. L. M., and Pathan, A.-S. K. Routing protocol design for secure WSN: Review and open research issues. Journal of Network and Computer Applications 41 (2014), 517–530.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-377e8a51-dc79-4bcc-89bc-7a6b910df81f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.