PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermoelastic bending analysis of thick functionally graded sandwich plates with arbitrary graded material properties using a novel quasi-3D HSDT

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a novel integral higher shear deformation theory including the stretching effect is developed for the thermoelastic bending analysis of symmetric and non-symmetric functionally graded materials (FGM) sandwich plates with an arbitrary gradient. This integral theory has only five unknowns, which is even less than the other shear and normal deformation theories. The proposed model has a reduced number of equations and satisfies automatically the free surface conditions without using the shear correction factor. The present model has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the virtual work principle and solved via Navier’s procedure. The convergence of the proposed theoretical numerical model is performed to demonstrate the efficacy of the model. Moreover, several parametric examples are presented to show the thermoelastic bending response of the various symmetric P-FG sandwich plates with arbitrarily varying material properties.
Rocznik
Strony
art. no. e80, 2024
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
  • Laboratoire d’Etude des Structures et de Mécanique des Matériaux, Département de Génie Civil, Faculté des Sciences et de la Technologie, Université Mustapha Stambouli, Mascara, Algérie
  • Laboratoire d’Etude des Structures et de Mécanique des Matériaux, Département de Génie Civil, Faculté des Sciences et de la Technologie, Université Mustapha Stambouli, Mascara, Algérie
  • Deanship of Scientifc Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia
  • Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
  • YFL (Yonsei Frontier Lab), Yonsei University, Seoul, Korea
  • Laboratoire d’Etude des Structures et de Mécanique des Matériaux, Département de Génie Civil, Faculté des Sciences et de la Technologie, Université Mustapha Stambouli, Mascara, Algérie
  • Artificial Intelligence Laboratory for Mechanical and Civil Structures, and Soil, University Center of Naama, P.O. Box 66, 45000 Naama, Algeria
autor
  • The NorthCap University, Gurugram, Haryana 122017, India
  • State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • Laboratoire de Recherche en Génie Civil, LRGC, Université de Biskra, B.P. 145, R.P., 07000 Biskra, Algeria
  • Department of Civil Engineering, Lebanese American University, Byblos, Lebanon
Bibliografia
  • 1. Issa CA, et al. Introduction to multifunctional epoxy composites. In: Hameed N, et al., editors. Multifunctional epoxy resins: self-healing, thermally and electrically conductive resins. Singapore: Springer Nature Singapore; 2023. p. 1-13.
  • 2. Houari T, Bessaim A, Houari MSA, Benguediab M, Tounsi A. Bending analysis of advanced composite plates using a new quasi 3D plate theory. Steel Compos Struct Int J. 2018;26(5):557-72.
  • 3. Gerges N, Issa CA, Sleiman E, Najjar M, Kattouf A. Experimental study of the shear behavior of RC beams strengthened with high-performance fiber-reinforced concrete. Int J Conc Struct Mater. 2023;17(1):17. https://doi.org/10.1186/s40069-023-00582-8.
  • 4. Tabbara M, Karam G, Beaino C, Jello J. Three dimensional modeling of a multiblock roman column under harmonic excitations. In: Protection of Historical Constructions. Springer International Publishing, Cham. 2022.
  • 5. Sahu SK, Sreekanth PR, Reddy SK. A brief review on advanced sandwich structures with customized design core and composite face sheet. Polymers. 2022;14(20):4267.
  • 6. Wang Z-X, Shen H-S. Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos B Eng. 2012;43(2):411-21.
  • 7. Kolahchi R. A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods. Aerosp Sci Technol. 2017;66:235-48.
  • 8. Garg A, Belarbi M-O, Chalak HD, Chakrabarti A. A review of the analysis of sandwich FGM structures. Compos Struct. 2021;258: 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
  • 9. Li Q, Iu V, Kou K. Three-dimensional vibration analysis of functionally graded material sandwich plates. J Sound Vib. 2008;311(1-2):498-515.
  • 10. Bennoun M, Houari MSA, Tounsi A. A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech Adv Mater Struct. 2016;23(4):423-31.
  • 11. Garg A, Chalak HD, Zenkour AM, Belarbi MO, Sahoo R. Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore. Thin Walled Struct. 2022;170: 108626.
  • 12. Garg A, Chalak HD, Li L, Belarbi MO, Sahoo R, Mukhopadhyay T. Vibration and buckling analyses of sandwich plates containing functionally graded metal foam core. Acta Mech Solida Sinica. 2022: 1-16.
  • 13. Shahmohammadi MA, Azhari M, Saadatpour MM. Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method. Steel Compos Struct. 2020;34(3):361-76.
  • 14. Si H, Shen D, Xia J, Tahouneh V. Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers. Steel Compos Struct Int J. 2020;36(1):1-16.
  • 15. Yang Z, Liu A, Yang J, Lai S-K, Lv J, Fu J. Analytical prediction for nonlinear buckling of elastically supported fg-gplrc arches under a central point load. Materials. 2021;14(8):2026.
  • 16. Karakoti A, Pandey S, Kar VR. Dynamic responses analysis of P and S-FGM sandwich cylindrical shell panels using a new layerwise method. Struct Eng Mech. 2021;80(4):417-32.
  • 17. Dergachova NV, Zou G. Dynamic response of functionally graded plates with a porous middle layer under time-dependent load. Comput Concr. 2021;27(3):269.
  • 18. Sahoo B, Mehar K, Sahoo B, Sharma N, Panda SK. Thermal frequency analysis of FG sandwich structure under variable temperature loading. Struct Eng Mech Int J. 2021;77(1):57-74.
  • 19. Foroutan K, Dai L. Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core. Steel Compos Struct. 2022;45(3):349-67.
  • 20. Belarbi M-O, Houari MSA, Hirane H, Daikh AA, Bordas SPA. On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory. Compos Struct. 2022;279: 114715. https://doi.org/10.1016/j.compstruct.2021.114715.
  • 21. Garg A, Chalak HD, Belarbi MO, Zenkour AM. A parametric analysis of free vibration and bending behavior of sandwich beam containing an open-cell metal foam core. Arch Civil Mech Eng. 2022;22(1):56. https://doi.org/10.1007/s43452-021-00368-3.
  • 22. Belarbi M-O, Daikh AA, Garg A, Hirane H, Houari MSA, Civalek Ö, Chalak HD. Bending and free vibration analysis of porous functionally graded sandwich plate with various porosity distributions using an extended layerwise theory. Arch Civil Mech Eng. 2022;23(1):15. https://doi.org/10.1007/s43452-022-00551-0.
  • 23. Shen M, Bever M. Gradients in polymeric materials. J Mater Sci. 1972;7:741-6.
  • 24. Swaminathan K, Sangeetha D. Thermal analysis of FGM plates-a critical review of various modeling techniques and solution methods. Compos Struct. 2017;160:43-60.
  • 25. Van Vinh P, Belarbi MO, Avcar M, Civalek Ö. An improved first-order mixed plate element for static bending and free vibration analysis of functionally graded sandwich plates. Arch Appl Mech. 2023;93(5):1841-62.
  • 26. Wang YQ, Zu JW. Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerosp Sci Technol. 2017;69:550-62.
  • 27. Parida S, Mohanty SC. Free vibration analysis of functionally graded skew plate in thermal environment using higher order theory. Int J Appl Mech. 2018;10(01):1850007.
  • 28. Joshi P, Jain N, Ramtekkar G, Virdi GS. Vibration and buckling analysis of partially cracked thin orthotropic rectangular plates in thermal environment. Thin Walled Struct. 2016;109:143-58.
  • 29. Tounsi A, Houari MSA, Benyoucef S. A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp Sci Technol. 2013;24(1):209-20.
  • 30. Houari MSA, Tounsi A, Bég OA. Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory. Int J Mech Sci. 2013;76:102-11.
  • 31. Chakraverty S, Pradhan K. Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions. Aerosp Sci Technol. 2014;36:132-56.
  • 32. Punera D, Kant T, Desai Y. Thermoelastic analysis of laminated and functionally graded sandwich cylindrical shells with two refined higher order models. J Therm Stresses. 2018;41(1):54-79.
  • 33. Tu TM, Quoc TH, Van Long N. Vibration analysis of functionally graded plates using the eight-unknown higher order shear deformation theory in thermal environments. Aerosp Sci Technol. 2019;84:698-711.
  • 34. Yang Z, Zhao S, Yang J, Liu A, Fu J. Thermomechanical in-plane dynamic instability of asymmetric restrained functionally graded graphene reinforced composite arches via machine learning-based models. Compos Struct. 2023;308: 116709.
  • 35. Yang Z, Hurdoganoglu D, Sahmani S, Nuhu AA, Safaei B. Nonlocal strain gradient-based nonlinear in-plane thermomechanical stability of FG multilayer micro/nano-arches. Arch Civil Mech Eng. 2023;23(2):90.
  • 36. Hirane H, Belarbi M-O, Houari MSA, Tounsi A. On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates. Eng Comput. 2022;38(5):3871-99. https://doi.org/10.1007/s00366-020-01250-1.
  • 37. Rebai B, Bouhadra A, Bousahla AA, Meradjah M, Bourada F, Tounsi A, Tounsi A, Hussain M. Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT. Arch Appl Mech. 2021;91(7):3403-20.
  • 38. Peng X-L, Li X-F. Thermoelastic analysis of functionally graded annulus with arbitrary gradient. Appl Math Mech. 2009;30(10):1211-20. https://doi.org/10.1007/s10483-009-1001-7.
  • 39. Reddy JN. A simple higher-order theory for laminated composite plates. 1984.
  • 40. Touratier M. An efficient standard plate theory. Int J Eng Sci. 1991;29(8):901-16. https://doi.org/10.1016/0020-7225(91)90165-Y.
  • 41. Zenkour A. Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory. Acta Mech. 2004;171(3-4):171-87.
  • 42. Yang Z, Wu H, Yang J, Liu A, Safaei B, Lv J, Fu J. Nonlinear forced vibration and dynamic buckling of FG graphene-reinforced porous arches under impulsive loading. Thin Walled Struct. 2022;181: 110059.
  • 43. Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells, vol. 2. New York: McGraw-hill; 1959.
  • 44. Das YC, Rath BK. Thermal bending of moderately thick rectangular plate. AIAA J. 1972;10(10):1349-51. https://doi.org/10.2514/3.6614.
  • 45. Reddy JN, Hsu YS. Effects of shear deformation and anisotropy on the thermal bending of layered composite plates. J Therm Stresses. 1980;3(4):475-93. https://doi.org/10.1080/01495738008926984.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-377b2ea2-6bb7-4b36-b5bd-d1a43c88d49d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.