Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An optimal control theory based method is presented aiming at minimizing the energy delivered from source and the power loss in a stepper motor circuit. A linear quadratic current regulator with an infinite time horizon is employed and its appropriateness for this type of a problem explained. With the purpose of improving the accuracy of the control system, the self and mutual inductances of windings are calculated using a finite element model. The numerically computed results are verified experimentally.
Rocznik
Tom
Strony
835--841
Opis fizyczny
Bibliogr. 22, rys., wykr.
Twórcy
autor
- Chair of Computer Engineering, Poznań University of Technology, 3a Piotrowo St., 60-965 Poznań, Poland
autor
- Chair of Computer Engineering, Poznań University of Technology, 3a Piotrowo St., 60-965 Poznań, Poland
autor
- Chair of Computer Engineering, Poznań University of Technology, 3a Piotrowo St., 60-965 Poznań, Poland
autor
- Chair of Computer Engineering, Poznań University of Technology, 3a Piotrowo St., 60-965 Poznań, Poland
autor
- Electronics and Computer Science, University of Southampton, SO17 1BJ, Southampton, United Kingdom
Bibliografia
- [1] F. Aghili, “Adaptive reshaping of excitation currents for accurate torque control of brushless motors”, IEEE Trans. on Control Systems Technology 36 (5), 356-365 (2008).
- [2] S. Brock, “Sliding mode control of a permanent magnet direct drive under non-linear friction”, COMPEL: Int. J. Computation and Mathematics in Electrical and Electronic Engineering 30 (3), 853-863 (2011).
- [3] V.M. Hernández-Guzmána and R.V. Carrillo-Serranoa, “Global PID position control of PM stepper motors and PM synchronous motors”, Int. J. Control 84 (11), 1807-1816 (2011).
- [4] V.M. Hernÿndez-Guzmána, R.V. Carrillo-Serranoa, and R. Silva-Ortigozab, “PD control for robot manipulators actuated by switched reluctance motors”, Int. J. Control 86 (3), 540-554 (2013).
- [5] D.E. Miller and M. Rossi, “Simultaneous stabilization with near optimal LQR performance”, IEEE Trans. on Automatic Control 46 (10), 1543-1555 (2001).
- [6] T. Kaczorek, “Necessary and sufficient conditions for the minimum energy control of positive discrete-time linear systems with bounded inputs”, Bull. Pol. Ac.: Tech. 62 (1), 85-89 (2014).
- [7] M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, “A novel higher order sliding mode control scheme”, System and Control Letters 58 (2), 102-108 (2009).
- [8] S. Laghrouche, F. Plestan, and A. Glumineau, “Higher order sliding mode control based on integral sliding mode”, Automatica 43 (3), 531-538.
- [9] S. Stępień, J. Bernat, and G. Szymański, “Fuzzy logic optimal control of BLDC motor considering LQR and SMC methodology”, Foundation of Computing and Decision Science 35 (3), 171-173 (2010).
- [10] S. Mir, M.S. Islam, T. Sebastian, and I. Husain, “Fault-tolerant switched reluctance motor drive using adaptive fuzzy logic controller”, IEEE Trans. Power Electron. 19 (2), 289-295 (2004).
- [11] S.H. Mao and M.C. Tsai, “An analysis of the optimum operating point for a switched reluctance motor”, J. Magnetism and Magnetic Materials 282, 53-56 (2004).
- [12] Z. Cheng, N. Takahashi, B. Forghani, G. Gilbert, Y. Du, Y. Fan, L. Liu, Z. Zhai, W. Wu, and J. Zhang, “Effect of excitation patterns on both iron loss and flux in solid and laminated steel configurations”, IEEE Trans. Magn. 46 (8), 3185-3188 (2010).
- [13] J.W. Kimball, P.T. Krein, and Y. Chen, “Hysteresis and delta modulation control of converters using sensorless current mode”, IEEE Trans. Power Electron. 21 (4), 1154-1158 (2006).
- [14] Y. Sozer, D.A. Torrey, and E. Mese, “Automatic control of excitation parameters for switched-reluctance motor drives”, IEEE Trans. on Power Electron. 18 (2), 594-603 (2003).
- [15] J. Bernat and S. Stępień, “Minimum energy control analysis 8. of the switched reluctance stepper motor considering a nonlinear finite element model”, Simulation Modelling Practice and Theory 28 (1), 1-11 (2012)
- [16] K. Dębowski, “Determination of optimal current in the nonideal one-phase system with unsteady parameters”, Bull. Pol. Ac.: Tech. 62 (2), 387-391 (2014).
- [17] G.H. Jang and C.J. Lee, “Design and control of the phase current of a brushless dc motor to eliminate cogging torque”, J. Applied Physics 99 (8), 395-403 (2006).
- [18] J. Bernat and S. Stępień, “Modeling and optimal control of variable reluctance stepper motor”, COMPEL: Int. J. Computation and Mathematics in Electrical and Electronic Engineering 30 (2), 726-740 (2011).
- [19] P. Ignaciuk and A. Bartoszewicz, “Linear-quadratic optimal control of periodic-review perishable inventory systems”, IEEE Trans. on Control Systems Technology 99, 1-8 (2011).
- [20] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam, and K. Srini-vas, “Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review”, IEEE Trans. Mag. 44 (12), 4605-4617 (2008).
- [21] H. Allihalli and M.I. Bayindir, “Time-energy optimal control of vector controlled induction motor”, COMPEL: Int. J. Computation and Mathematics in Electrical and Electronic Engineering 21 (2), 235-251 (2002).
- [22] J. Bernat, J. Kolota, S. Stępień, and J. Sykulski, “A steady state solver for modelling rotating electromechanical devices exploiting the transformation from time to position domain”, Int. J. Numerical Modelling: Electronic Networks, Devices and Fields 27 (2), 213-228 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3776b8ac-84fb-4183-be85-fa4a5f7d05fd