PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Membrane fouling in the ultrafiltration of water–protein–sodium chloride model systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents ultrafiltration results of model BSA (bovine serum albumin) and MB (myoglobin) solutions prepared with or without NaCl addition. The protein concentrations in the solutions were equal to 0.05 g dm 3 for MB and 0.5 g dm 3 for BSA. The ultrafiltration tests were performed using a laboratory scale unit equipped with 90 mm ceramic disc membranes with a filtration area of 5:6-10-3 m2 and cut-off of 50 or 150 kDa. The tests were run under constant process conditions, i.e. a cross flow volume (CFV) of 5 ms-1, transmembrane pressure (TMP) of 0.2 MPa, temperature of 20 ◦C and NaCl concentration of 0 or 10 wt%. The installation worked in a semi-open mode with a continuous permeate discharge and retentate recycle. The performance of the membranes was measured with the permeate volumetric flow rate, JV (m3m 2s 1) while their selectivity was determined by the protein rejection, R. The paper evaluates and discusses the protein rejection mechanisms as well as the influence of the membrane cut-off and sodium chloride concentration in the feed on the flux decline during the ultrafiltration of BSA and MB. Moreover, it provides an analysis of the first fouling phase by applying usual filtration laws.
Rocznik
Strony
185--–196
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Maritime University of Szczecin, Faculty of Mechanics, Waly Chrobrego Str. 1-2, 70-500 Szczecin, Poland
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Wolczanska 213, 90-924 Lodz, Poland
  • Maritime University of Szczecin, Faculty of Economics and Transport Engineering, H. Poboznego 11, 70-507 Szczecin, Poland
Bibliografia
  • 1. Abdelrasoul A., Doan H., Lohi A., Cheng C.H., 2015. Mass transfer mechanisms and transport resistances in membranę separation process, In: Solecki M. (Ed.), Mass Transfer. Advancement in Process Modelling. IntechOpen. DOI: 10.5772/60866.
  • 2. Almecija M.C., Ibanez R., Guadix A., Guadix E.M., 2007. Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane. J. Membr. Sci., 288, 28–35. DOI: 10.1016/j.memsci.2006.10.021.
  • 3. Bai R.B, Leow H.F., 2002. Microfiltration of activated sludge wastewater – The effect of system operation parameters. Sep. Purif. Technol., 29, 189–198. DOI: 10.1016/S1383-5866(02)00075-8.
  • 4. Brião V.B., Tavares C.R.G., 2012. Pore blocking mechanism for the recovery of milk solids from dairy wastewater by ultrafiltration. Braz. J. Chem. Eng., 29, 393–407. DOI: 10.1590/S0104-66322012000200019.
  • 5. Casa E.J., Guadix A., Ibanez R., Guadix E.M., 2007. Influence of pH and salt concentration on the cross-flow microfiltration of BSA through a ceramic membrane. Biochem. Eng. J., 33, 110–115. DOI: 10.1016/j.bej.2006. 09.009.
  • 6. Cheang B., Zydney A.L., 2003. Separation of alpha-lactalbumin and beta-lactoglobulin using membrane ultrafiltration. Biotechnol. Bioeng., 83, 201–9. DOI: 10.1002/bit.10659.
  • 7. Cheng T.W., Wu J.G., 2001. Modified boundary layer resistance model for membrane ultrafiltration. Tamkang J. Sci. Eng., 4 (2), 111–117.
  • 8. Cinta M., Velaa V., Alvarez Blancoa S., Ja Garcıaa J.L., Bergantinos Rodrıguez E., 2008. Analysis of membranę pore blocking models applied to the ultrafiltration of PEG. Sep. Purif. Technol., 62, 489–498. DOI: 10.1016/j.seppur.2008.02.028.
  • 9. Dabestani S., Arcot J., Chen V., 2017. Protein recovery from potato processing water: Pre-treatment and membranę fouling minimization. J. Food Eng., 195, 85–96. DOI: 10.1016/j.jfoodeng.2016.09.013.
  • 10. Ehsani N., Nystrom M., 1995. Fractionation of BSA and myoglobin with modified and unmodified ultrafiltration membranes. Bioseparation, 5 (1), 1–10.
  • 11. Fang Y., 2013. Study of the effect of surface morphology on mass transfer and fouling behaviour of reverse osmosis and nanofiltration membrane processes. University of Central Florida, Orlando, Florida. Available at: http://etd.fcla.edu/CF/CFE0004837/Yuming_disseration_final_draft.pdf.
  • 12. Gkotsis P.K., Banti D.CH., Efrosini N.P., Zouboulis A.I. and Samaras P.E., 2014. Fouling issues in membranę bioreactors (MBRs) for wastewater treatment: Major mechanisms, prevention and control strategies. Processes, 2, 795–866. DOI: 10.3390/pr2040795.
  • 13. Kuca M., Szaniawska D., 2009. Application of microfiltration and ceramic membranes for treatment of salted aqueous effluents from fish processing. Desalination, 241, 227–235. DOI: 10.1016/j.desal.2008.01.068.
  • 14. Lee J., Jeong S., Ye Y., Chen V., Vigneswaran S., Leiknes T., Liu Z., 2016. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: fouling mechanism as a function of pH and ionic strength. Sep. Purif. Technol., 176, 323–334. DOI: 10.1016/j.seppur.2016.10.061.
  • 15. Lieu Le N., Nunes S.P., 2016. Materials and membrane technologies for water and energy sustainability. Sust. Mat. Technol., 7, 1–28. DOI:10.1016/j.susmat.2016.02.001.
  • 16. Lim A.L., Bai R., 2003. Membrane fouling and cleaning in microfiltration of activated sludge wastewater. J. Membr. Sci., 216, 279–290. DOI: 10.1016/S0376-7388(03)00083-8.
  • 17. Luján-Facundo M.J., Mendoza-Roca J.A., Cuartas-Uribe B., Álvarez-Blanco S., 2015. Evaluation of cleaning efficiency of ultrafiltration membranes fouled by BSA using FTIR–ATR as a tool. J. Food Eng., 163, 1–8. DOI: 10.1016/j.jfoodeng.2015.04.015.
  • 18. Ma B., Hu C.,Wang X., Xie Y., JeffersonW.A., Liu H., Qu J., 2015. Effect of aluminum speciation on ultrafiltration membrane fouling by low dose aluminum coagulation with bovine serum albumin (BSA). J. Membr. Sci., 492, 88–94. DOI: 10.1016/j.memsci.2015.05.043.
  • 19. Mohammadi T., Kazemimoghadam M., Saadabadi M., 2003. Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil in water emulsions. Desalination, 157, 369–375. DOI: 10.1016/S0011-9164(03)00419-3.
  • 20. Riffat R., 2012. Fundamental of wastewater treatment and engineering. CRC Press, 359.
  • 21. Saxena A., Tripathi B.P., Kumar M., Shahi V.K., 2009. Membrane-based techniques for the separation and purification of proteins: An overview. Adv. Colloid Interface Sci., 145, 1–22. DOI: 10.1016/j.cis.2008.07.004.
  • 22. Shah T.N., Foley H.C., Zydney A.L., 2007. Development and characterization of nanoporous carbon membranes for protein ultrafiltration. J. Membr. Sci., 295, 40–4. DOI: 10.1016/j.memsci.2007.02.030.
  • 23. United States Environmental Protection Agency, 2005. Membrane Filtration Guidance Manual. Office of Water (4601). EPA815-R-06-009.
  • 24. Wiesner M.R., Veerapaneni S., Brejchova D.,1992. Improvement in microfiltration using coagulation pretreatment, In: Klute R., Hahn H.H., (Eds.), Proceedings of the Fifth Gothenburg Symposiumon Chemical Water and Wastewater Treatment II. Springer, Nice, France, New York, 20–40.
  • 25. Zulkali M. D., Ahmad A.L., Derek C.J., 2005, Preliminary studies on the effect of pH, ionic strenghtband pressure on protein fractionation. Desalination, 179, 381–390. DOI: 10.1016/j.desal.2004.11.084.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37717854-9581-4686-842c-c81a2027a0bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.