PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A flexible control strategy for shoreto- ship power system in terms of gridconnected and off-grid switch

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are promising application prospects for applying the shore power technology to the ships in the port for the purpose of pollution prevention. However, the grid-connection of the shore power supply to the ship power grid leads to current surges, damages the ship power consumption equipment, and results in the instability of the ship power grid system, which will seriously affect the reliability of the operation of the ship power grid system. In order to address this problem, the mathematical model of virtual synchronous generator is introduced in this paper. Then, a control method for the flexible grid-connection of the shore power supply to the ship power grid based on the virtual synchronous generator is proposed. Next, the output characteristics of the shore power supply are optimized to match the characteristics of the ship generator, which contributes to the flexible grid-connection of the shore power supply to the ship power grid system. The effectiveness and the feasibility of this method are verified by simulation and experiments.
Rocznik
Tom
S 2
Strony
139--148
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
  • School of Automation, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
autor
  • School of Automation, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
autor
  • School of Electrical Engineering, Southeast University, Nanjing, Jiangsu, China
autor
  • China Electric Power Research Institute, Beijing, China
Bibliografia
  • 1. K. L. Peterson, P. Chavdarian, M. Islam and C. Cayanan.: Tackling ship pollution from the shore, IEEE Industry Applications Magazine, vol. 15, no. 1, pp. 56-60, 2009.
  • 2. D. Paul and V. Haddadian.: Transient Overvoltage Protection of Shore-to-Ship Power Supply System, IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1193-1200, 2011..
  • 3. M. H. Chou, C. L. Su, Y. C. Lee, H. M. Chin, G. Parise and P. Chavdarian.: Voltage-Drop Calculations and Power Cable Designs for Harbor Electrical Distribution Systems With High Voltage Shore Connection, IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 1807-1814, 2017.
  • 4. M. Yu, W. Huang, N. Tai, X. Zheng, Z. Ma and Y. Wang.: Advanced microgrid and its multi-objective regulation strategy for shore supply, The Journal of Engineering, vol. 2017, no. 13, pp. 1590-1594, 2017.
  • 5. EPRI.: P124 Advanced distribution automation-program overview, 2008􀋊
  • 6. J. M. Guerrero et al.: Distributed Generation: Toward a New Energy Paradigm, IEEE Industrial Electronics Magazine, Vol. 4, no. 1, pp. 52-64, 2010.
  • 7. Zhong Q CHornik T.: Control of power inverters in renewable energy and smart grid integration, John Wiley & Sons, 2012.
  • 8. Yong Chen, Hesse R, Turschner D, etal.: Improving the Grid Power Quality Using Virtual Synchronous Machines. Power Engineering, Energy and Electrical Drives (POWERENG), pp.11-13, 2011.
  • 9. Fang Gao, Iravani M R.: A Control Strategy for a Distributed Generation Unit in Grid-Connected and Autonomous Modes of Operation. IEEE Transactions on Power Delivery, Vol. 23, no. 4, pp. 850-859, 2008.
  • 10. T. Younis, M. Ismeil, M. Orabi, E. K. Hussain.: A singlephase self-synchronized synchronverter with bounded droop characteristics, 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1624-1629, 2018.
  • 11. H. Li et al.: Single-phase synchronverter dynamic optimization and parameters design, 43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 7866-7871, 2017.
  • 12. M. Ońate, J. Posada, J. López, J. Quintero and M. Aredes.: Control of a back-to-back converter as a power transfer system using synchronverter approach, IET Generation, Transmission & Distribution, vol. 12, no. 9, pp. 1998-2005, 2018.
  • 13. D. Grider M. Das A. Agarwal J. Palmour S. Leslie J. Ostop R. Raju M. Schutten and A. Hefner.: 10kV/120A SiC DMOSFET half-bridge power modules for 1 MVA solid state power substation, Proc. IEEE Electr. Ship Tech. Symp, pp. 131􀌢134, 2011.
  • 14. K. Hatua S. Dutta A. Tripathi S. Baek G. Karimi and S. Bhattacharya.: Transformerless intelligent power substation design with 15 kV SiCIGBT for grid interconnection, Proc. IEEE ECCE, pp. 4225􀌢4232, 2011.
  • 15. H. F. Fan and H. Li.: High frequency transformer isolated bidirectional DC-DC converter modules with high efficiency over wide load range for 20 kVA solid state transformer, IEEE Trans. Power Electronics, vol. 26, no. 12, pp. 3599–3608, 2011.
  • 16. H. S. Qin and J. W. Kimball.: AC-AC dual active bridge converter for solid state transformer, in Proc. IEEE ECCE, pp. 3039–3044, 2009. 14. K. Hatua􀋈S. Dutta􀋈A. Tripathi􀋈S. Baek􀋈G. Karimi􀋈and S. Bhattacharya.: Transformerless intelligent power substation design with 15 kV SiCIGBT for grid interconnection, Proc. IEEE ECCE, pp. 4225􀌢4232, 2011.
  • 15. H. F. Fan and H. Li.: High frequency transformer isolated bidirectional DC-DC converter modules with high efficiency over wide load range for 20 kVA solid state transformer, IEEE Trans. Power Electronics, vol. 26, no. 12, pp. 3599–3608, 2011.
  • 16. H. S. Qin and J. W. Kimball.: AC-AC dual active bridge converter for solid state transformer, in Proc. IEEE ECCE, pp. 3039–3044, 2009.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-376f91c8-1f00-4224-aee1-814696735d4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.