Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Polyamide 6 (noted as PA6)/Ag nanocomposites were prepared by an in situ solution polymerization method. AgNO3 was used as filler and was directly reduced to silver nanoparticles resulting in uniformly dispersed nanoparticles in the PA6 matrix. The thermal stability, crystallization, melting performance, and dispersion properties of the PA6/Ag nanocomposites were studied using transmission electron microscopy (TEM), thermogravimetric analysis (TG), differential thermal scanning calorimetry (DSC), X-ray diffraction (XRD), and polarized light microscopy (POM). Furthermore, the mechanical and tribological behaviors of as-prepared nanocomposites were evaluated using universal tensile testing, impact testing, and friction testing machines. The results show that Ag-nanoparticles are evenly dispersed in PA6 and decrease in size with increasing Ag content. Whereas the crystallinity increased with increasing Ag content, the crystallization temperature of the nanocomposites did not change significantly. However, the mechanical and tribological properties of the nanocomposites increased compared with pure PA6.
Czasopismo
Rocznik
Tom
Strony
36--40
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Huanghuai University, College of Chemistry & Chemical Engineering, Zhumadian 463000, China
- Henan University, Key Laboratory of Ministry of Education for Special Functional Materials, Kaifeng 475000, China
autor
- Huanghuai University, College of Chemistry & Chemical Engineering, Zhumadian 463000, China
autor
- Huanghuai University, College of Chemistry & Chemical Engineering, Zhumadian 463000, China
autor
- Huanghuai University, College of Chemistry & Chemical Engineering, Zhumadian 463000, China
Bibliografia
- 1. Liu, X., Qi, S. & Li, Y., et al. (2013). Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layer-by-layer assembly. Water Res., 47(9), 3081–3092. DOI: 10.1016/j.watres.2013.03.018.
- 2. Kumar, S. V., Huang, N. M. & Lim, H. N., et al. (2013). Preparation of highly water dispersible functional graphene/silver nanocomposite for the detection of melamine. Sens. Actuators B 181, 885–893. DOI: 10.1016/j.snb.2013.02.045.
- 3. Babu, K. F., Dhandapani, P. & Maruthamuthu, S., et al. (2012). One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydr. Polym. 90(4), 1557–1563. DOI: 10.1016/j.carbpol.2012.07.030.
- 4. Bagheri, H., Banihashemi, S. & Jelvani, S. (2016). A polythiophene–silver nanocomposite for headspace needle trap extraction. J. Chromatogr. A 1460, 1–8. DOI: 10.1016/j.chroma.2016.06.078.
- 5. Regiel, A., Irusta, S. & Kyzioł, A., et al. (2012). Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology 24(1), 015101. DOI: 10.1088/0957-4484/24/1/015101.
- 6. Navratil, T. & Kopanica, M. (2002). Analytical application of silver composite electrode. Crit. Rev. Anal. Chem. 32(2), 153–166. DOI: 10.1080/10408340290765506.
- 7. Sánchez-Valdes, S., Ortega-Ortiz, H. & Ramos-de Valle, L. F., et al. (2009). Mechanical and antimicrobial properties of multilayer films with a polyethylene/silver nanocomposite layer. J. Appl. Polym. Sci. 111(2), 953–962. DOI: 10.1002/app.29051.
- 8. Liang, G. D., Bao, S. P. & Tjong, S. C. (2007). Microstructure and properties of polypropylene composites filled with silver and carbon nanotube nanoparticles prepared by melt-compounding. Mater. Sci. Eng. B 142(2), 55–61. DOI: 10.1016/j.mseb.2007.06.028.
- 9. Narayanan, K. B. & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in colloid and interface science, 156(1): 1–13. DOI: 10.1016/j.cis.2010.02.001.
- 10. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chem, 13(10), 2638–2650. DOI: 10.1039/C1GC15386B.
- 11. Bessekhouad, Y., Robert, D. & Weber, J. V. (2003). Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. J. Photochem. Photobiol. A 157(1), 47–53. DOI: 10.1016/S1010-6030(03)00077-7.
- 12. Zhao, M. & Crooks, R. M. (1999). Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Ang. Chem.-Inter. Edition 38(3), 364–365. DOI: 1433-7851/99/3803-0364.
- 13. Cao, B. Q., Zúñiga-Pérez, J. & Czekalla, C., et al. (2010). Tuning the lateral density of ZnO nanowire arrays and its application as physical templates for radial nanowire heterostructures. J. Mater. Chem. 20(19), 3848–3854. DOI: 10.1039/B926475B.
- 14. Yuranova, T., Rincon, A. G. & Bozzi, A., et al. Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver[J]. J. Photoch. Photobio. A 161(1), 27–34. DOI: 10.1016/S1010-6030(03)00204-1.
- 15. Divya, K. P., Miroshnikov, M. & Dutta, D., et al. (2016). In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials. Acc.f Chem. Res. 49(9), 1671–1680. DOI: 10.1021/acs.accounts.6b00201.
- 16. Flahaut, E., Govindaraj, A. & Peigney, A., et al. (1999). Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions. Chem. Phys. Lett. 300(1), 236–242. DOI: 10.1016/S0009-2614(98)01304-9.
- 17. Shanak, H., Naumann, A. & Lion, J., et al. (2014). Orientation of nano-crystallites and anisotropy of uniaxially drawn α-polyamide 6 films: XRD, FTIR, and microwave measurements. J. Mater. Sci. – Mater. Electron. 49(23), 8074–8083. DOI: 10.1007/s10853-014-8515-6.
- 18. Liang, J., Xu, Y. & Wei, Z., et al. (2014). Mechanical properties, crystallization and melting behaviors of carbon fiber-reinforced PA6 composites. J. Therm. Anal. Calorim. 115(1), 209–218. DOI: 10.1007/s10973-013-3184-2.
- 19. Layachi, A., Frihi, D. & Satha, H., et al. (2016). Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites. J. Therm. Anal. Calorim. 124(3), 1319–1329. DOI: 10.1007/s10973-016-5286-0.
- 20. Xu, Q., Wang, S. & Chen, F., et al. (2016). Studies on the interfacial effect between nano-SiO2 and nylon 6 in nylon 6/SiO2 nanocomposites. Nanomater. Nanotechnol. 6, 31–36. DOI: 10.5772/63365.
- 21. Xu, Q., Li, X. & Zhang, Z. (2015). Preparation of copper nanoparticle improved polyamide 6 composites by in-situ solution route with cupric oxide as metallic copper source and investigation of their properties. New J. Chem. 39(4), 3015–3020. DOI: 10.1039/C4NJ02302A.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-376e9b8c-c770-419b-8364-583dd17158d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.