PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Fractions of Zinc, Chromium and Cobalt in Municipal Solid Waste Incineration Bottom Ash

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the fresh samples of municipal solid waste incineration (MSWI) bottom ash, the fractional composition of Zn, Cr and Co was investigated. The BCR method was utilised to evaluate the acid soluble and exchangeable fraction (F1), reducible fraction (F2), oxidizable fraction (F3) and residual fraction (F4). Physico-chemical parameters such as pH, dry mass, and pseudo-total metal content were also determined. The percentage of zinc in fractions was in the following order: F3 (31.8%) > F1 (30.6%) > F2 (27.8%) > F4 (9.8%), for chromium F4 (88.7%) > F3 (5.4%) > F1 (3.2%) > F2 (2.7%), and in the case of cobalt F4 (59.8%) > F1 (14.3%) > F2 (13.6%) > F3 (12.3%). Mobile metal pool (F1–F3) gathered the most of zinc (90.2%) and the least of chromium (11.3%).
Rocznik
Strony
12--16
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Institute of Environmental Engineering and Energy Production, Department of Technology in Environmental Engineering, Bialystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
  • 1. Bruder-Hubscher V., Lagarde F., Leroy M.J.F., Coughanowr C., Enguehard F. 2002. Application of a sequential extraction procedure to study the release of elements from municipal solid waste incineration bottom ash. Analytica Chimica Acta, 451, 285–295.
  • 2. Chimenos J.M., Segarra M., Fernández M.A., Espiell F. 1999. Characterization of the bottom ash in municipal solid waste incinerator. Journal of Hazardous Materials, 64, 211–222.
  • 3. Chimenos J.M., Fernández A.I., Miralles L., Segarra M., Espiell F. 2003. Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Management 23(10), 887–895.
  • 4. Coetzee J.J., Bansal N., Chirwa E.M.N. 2020 Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Exposure and Health, 12, 51–62.
  • 5. Dou X., Ren F., Nguyen M.Q., Ahamed A., Yijn K., Chan W.P., Chang V.W.C. 2017. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable and Sustainable Energy Reviews, 79, 24–38.
  • 6. Gonzales M.L., Blanc D., de Brauer C. 2019. Multi-Analytical approach and geochemical modeling for mineral trace element speciation in MSWI bottom-ash. Waste and Biomass Valorization, 10, 547–560.
  • 7. Guarino F., Improta G., Triassi M., Cicatelli A., Castiglione S. 2020. Effects of zinc pollution and compost amendment on the root microbiome of a metal tolerant poplar clone. Frontiers in Microbiology, 15(11), 1677–1696.
  • 8. Haberl J., Schuster M. 2019. Solubility of elements in waste incineration fly ash and bottom ash under various leaching conditions studied by a sequential extraction procedure. Waste Management, 87, 268–278.
  • 9. Huang Y., Chen J., Shi S., Li B., Mo J., Tang Q. 2020. Mechanical properties of municipal solid waste incinerator (MSWI) bottom ash as alternatives of subgrade materials. Advances in Civil Engineering, 9254516. https://doi.org/10.1155/2020/9254516
  • 10. Huber F., Korotenko E., Šyc M., Fellner J. 2021. Material and chemical composition of municipal solid waste incineration bottom ash fractions with different densities. Journal of Material Cycles and Waste Management, 23, 394–401.
  • 11. Kuokkanen T., Pöykiö R., Nurmesniemi H., Rämö J. 2006. Sequential leaching of heavy metals and sulfur in bottom ash and fly ash from the co-combustion of wood and peat at a municipal district heating plant. Chemical Speciation and Bioavailability, 18(4), 131–142.
  • 12. Łukowski A., Olejniczak J.I. 2020. Fractionation of cadmium, lead and copper in municipal solid waste incineration bottom ash. Journal of Ecolgical Engineering, 21(3), 112–116.
  • 13. Minane J.R., Becquart F., Abriak N.E., Deboffe C. 2017. Upgraded mineral sand fraction from MSWI bottom ash: an alternative solution for the substitution of natural aggregates in concrete applications. Procedia Engineering, 180, 1213–1220.
  • 14. Nilanjana D., Lazar M. 2011. Pollution and bioremediation: An overview. In Biomanagement of metal-contaminated soils. Springer, Dordrecht, 297–321.
  • 15. Pöykiö R., Mäkelä M., Watkins G., Nurmesmeni H., Dahl O. 2016. Heavy metals leaching in bottom ash and fly ash fractions from industrial-scale BFB-boiler for environmental risks assessment. Transactions of Nonferrous Metals Society of China, 26, 256–264.
  • 16. Rodgers K.J., Hursthouse A., Cuthbert S. 2015. The potential of sequential extraction in the characterisation and management of wastes from steel processing: a prospective review. International Journal of Environmental Research and Public Health, 12, 11724–11755.
  • 17. Salam A., Shaheen S.M., Bashir S., Khan I., Wang J., Rinklebe J., Rehman F.U., Hu H. 2019. Rice straw- and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content. Journal of Environmental Management, 237(1), 5–14.
  • 18. Vaitkus A., Gražulytė J., Šernas O., Vorobjovas V., Kleizienė R. 2019. An algorithm for the use of MSWI bottom ash as a building material in road pavement structural layers. Construction and Building Materials, 212, 456–466.
  • 19. Vateva I., Laner D. 2020. Grain-size specific characterisation and resource potentials of municipal solid waste incineration (MSWI) bottom ash: A German case study. Resources, 9, 66–90.
  • 20. Verbinnen B., Billen P., Van Caneghem J., Vandecasteele C. 2017. Recycling of MSWI Bottom Ash: a review of chemical barriers, engineering applications and treatment technologies. Waste and Biomass Valorization, 8, 1453–1466.
  • 21. Vishnu T.B., Singh K. L. 2021. A study on the suitability of solid waste materials in pavement construction: A review. International Journal of Pavement Research and Technology, 14, 625–637.
  • 22. Wielgosiński G., Wasiak D., Zawadzka A. 2014. The use of sequential extraction for assessing environmental risks of waste incineration bottom ash. Ecological Chemistry and Engineering, 21(3), 413–423.
  • 23. Yang Z., Chen Y., Sun Y., Liu L., Zhang Z., Ge X. 2016. The partitioning behavior of trace element and its distribution in the surrounding soil of a cement plant integrated utilization of hazardous wastes. Environmental Science and Pollution Research, 23, 13943–13953.
  • 24. Yao J., Li W., Kong Q., Wu Y., He R., Shen D. 2010. Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejiang province, China. Fuel, 89, 616–622.
  • 25. Yao J., Li W., Kong Q., Xia F., Shen D. 2012. Effect of weathering on the mobility of zinc in municipal solid waste incinerator bottom ash. Fuel, 93, 99–104.
  • 26. Yao J., Kong Q., Zhu H., Long Y., Shen D. 2013. Content and fractionation of Cu, Zn and Cd in size fractionated municipal solid waste incineration bottom ash. Ecotoxicology and Environmental Safety, 94, 131–137.
  • 27. Zhang S., Herbell J.-D., Gaye B. 2004. Biodegradable organic matter in municipal solid waste incineration bottom ash. Waste Management, 24(7), 673–679.
  • 28. Zhao H., Tian Y., Wang R., Wang R., Zeng X., Yang F., Wang Z., Chen M., Shu J. 2021. Seasonal variation of the mobility and toxicity of metals Beijing’s municipal solid waste incineration fly ash. Sustainability, 13(12), 6532–6544.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-376d1583-f391-44b0-a981-983daa30168b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.