PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomimetic alginate/perfluorocarbon microcapsules - tthe effect on in vitro metabolic activity and long-term cell culture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cell encapsulation seems to be a promising tool in tissue engineering. However, it has been shown to have several limitations in terms of long-term cell cultures due to an insufficient oxygen supply. In this study we propose the use of novel microcapsules designed for long-term cell culture consisting of an alginate shell and perfluorocarbon (PFC) core, which works as a synthetic oxygen carrier and reservoir. The influence of PFC presence in the culture as well as the size of structures on cell metabolism was evaluated during 21-day cultures in normoxia and hypoxia. We showed significant improvement in cell metabolism in groups where cells were encapsulated in hydrogel structures with a PFC core. The cells maintained a typical metabolism (oxidative phosphorylation) through all 21 days of the culture, overcoming the oxygen supply shortage even in large structures (diameter ¡ 1 mm). Applying PFC in alginate matrices can improve cell metabolism and adaptation in long-term cell cultures.
Rocznik
Strony
81--–95
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland
  • NanoSanguis S.A., Rakowiecka 36, 02-532 Warsaw, Poland
  • Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland
  • Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland
  • Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland
  • Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland
autor
  • Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland
Bibliografia
  • 1. Cairns R.A., Harris I.S., Mak T.W., 2011. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 11, 85–95. DOI: 10.1038/nrc2981.
  • 2. Chen H., Ouyang W., Jones M., Metz T., Martoni C., Haque T., Cohen R., Lawuyi B., Prakash S., 2007. Preparation and characterization of novel polymeric microcapsules for live cell encapsulation and therapy. Cell Biochem. Biophys., 47, 159–167. DOI: 10.1385/cbb:47:1:159.
  • 3. Cosco D., Fattal E., Fresta M., Tsapis N., 2015. Perfluorocarbon-loaded micro and nanosystems for medical imaging: A state of the art. J. Fluorine Chem., 171, 18–26. DOI:10.1016/j.jfluchem.2014.10.013.
  • 4. de Vos P., Faas M.M., Strand B., Calafiore R., 2006. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials, 27, 5603–5617. DOI: 10.1016/j.biomaterials.2006.07.010.
  • 5. de Vos P., Lazarjani H.A., Poncelet D., Faas M.M., 2014. Polymers in cell encapsulation from an enveloped cel perspective. Adv. Drug Delivery Rev., 67–68, 15–34. DOI: 10.1016/j.addr.2013.11.005.
  • 6. Dixit R., Boelsterli U.A., 2007. Healthy animals and animal models of human disease(s) in safety assessment of human pharmaceuticals, including therapeutic antibodies. Drug Discovery Today, 12, 336–342. DOI: 10.1016/j.drudis.2007.02.018.
  • 7. Echeverria Molina M.I., Malollari K.G., Komvopoulos K., 2021. Design challenges in polymeric scaffolds for tissue engineering. Front. Bioeng. Biotechnol., 9, 617141. DOI: 10.3389/fbioe.2021.617141.
  • 8. El-Sherbiny I.M., Yacoub M.H., 2013. Hydrogel scaffolds for tissue engineering: Progress and challenges. Global Cardiol. Sci. Pract., 2013, 38. DOI: 10.5339/gcsp.2013.38.
  • 9. Farina M., Alexander J.F., Thekkedath U., Ferrari M., Grattoni A., 2019. Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Adv. Drug Delivery Rev., 139, 92–115. DOI: 10.1016/j.addr.2018.04.018.
  • 10. Farris A.L., Rindone A.N„ Grayson W.L., 2016. Oxygen delivering biomaterials for tissue engineering. J. Mater.Chem. B, 4, 3422–3432. DOI: 10.1039/c5tb02635k.
  • 11. Figliuzzi M., Plati T., Cornolti R., Adobati F., Fagiani A., Rossi L., Remuzzi G., Remuzzi A., 2006. Biocompatibility and function of microencapsulated pancreatic islets. Acta Biomater., 2, 221–227. DOI: 10.1016/j.actbio.2005. 12.002.
  • 12. Haisch A., Gröger A., Radke C., Ebmeyer J., Sudhoff H., Grasnick G., Jahnke V., Burmester G.R., Sittinger M., 2000. Macroencapsulation of human cartilage implants: Pilot study with polyelectrolyte complex membranę encapsulation. Biomaterials, 21, 1561–1566. DOI: 10.1016/S0142-9612(00)00038-7.
  • 13. Hoshiba T., Lu H., Kawazoe N., Chen G., 2010. Decellularized matrices for tissue engineering. Expert Opin. Biol. Ther., 10, 1717–1728. DOI: 10.1517/14712598.2010.534079.
  • 14. Kanga A.R., Parka J.S., Ju J., Jeong G.S., Lee S.-H., 2016. Cell encapsulation via microtechnologies. Biomaterials., 35, 2651–2663. DOI: 10.1016/j.biomaterials.2013.12.073.
  • 15. Khattak S.F., Chin K.S., Bhatia S.R., Roberts S.C., 2007. Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol. Bioeng.., 96, 156–166. DOI: 10.1002/bit.21151.
  • 16. Koch S., Schwinger C., Kressler J., Heinzen Ch., Rainov N.G., 2003. Alginate encapsulation of genetically engineered mammalian cells: Comparison of production devices, methods and microcapsule characteristics. J. Microencapsulation, 20, 303–316. DOI: 10.1080/0265204021000058438.
  • 17. Krieger K.H., Isom O.W., 2012. Blood conservation in cardiac surgery. Springer-Verlag New York, Inc., 588–592.
  • 18. Liu J., Xu H.K., Zhou H., Weir M.D., Chen Q., Trotman C.A., 2013. Human umbilical cord stem cell encapsulation in novel macroporous and injectable fibrin for muscle tissue engineering. Acta Biomater., 9, 4688–4697. DOI: 10.1016/j.actbio.2012.08.009.
  • 19. Pilarek M., 2014. Liquid perfluorochemicals as flexible and efficient gas carriers applied in bioprocess engineering: An updated overview and future prospects. Chem. Process Eng., 35, 463–487. DOI: 10.2478/cpe-2014-0035.
  • 20. Salvatori M., Katari R., Patel T., Peloso A., Mugweru J., Owusu K., Orlando G., 2017. Extracellular matrix scaffold technology for bioartificial pancreas engineering: State of the art and future challenges. J. Diabetes Sci. Technol., 8, 159–169. DOI: 10.1177/1932296813519558.
  • 21. Seifert B.D., Phillips J.A., 2008. Production of small, monodispersed alginate beads for cell immobilization. Biotechnol. Progr., 13, 562–568. DOI: 10.1021/bp9700723.
  • 22. Teixeira L.S. M., Feijen J., van Blitterswijk C.A., Dijkstra P.J., Karperien M., 2012. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 33, 1281–1290. DOI: 10.1016/j.biomaterials.2011.10.067.
  • 23. Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K., 2016. Extracellular matrix structure. Adv. Drug Delivery Rev., 97, 4–27. DOI: 10.1016/j.addr.2015.11.001.
  • 24. Vander Heiden M.V., Cantley L.C., Thompson C.B., 2009. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324, 1029–1033. DOI: 10.1126/science.1160809.
  • 25. Veiseh O., Doloff J.C., Ma M., Vegas A.J., Tam H.H., Bader A.R., Li J., Langan E., Wyckoff J., Loo W.S., Jhunjhunwala S., Chiu A., Siebert S., Tang K., Hollister-Lock J., Aresta-Dasilva S., Bochenek M., Mendoza-Elias J., Wang Y., Qi M., Lavin D.M., Chen M., Dholakia N., Thakrar R., Lacík I., Weir G.C., Oberholzer J., Greiner D.L., Langer R., Anderson D.G., 2015. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nature Mater. 14, 643–651. DOI: 10.1038/nmat4290.
  • 26. Wang N., Adams G., Buttery L., Falcoone F. H., Stolnik S., 2009. Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. J. Biotechnol., 144, 304–312. DOI: 10.1016/j.jbiotec.2009.08.008.
  • 27. Wijekoon A., Fountas-Davis N., Leipzig N.D., 2013. Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing. Acta Biomater., 9, 5653–5664. DOI: 10.1016/j.actbio.2012.10.034.
  • 28. Yue B., 2014. Biology of the extracellular matrix: An overview. J. Glaucoma., 23, S20–S23. DOI: 10.1097/IJG. 0000000000000108.
  • 29. Zhang Q., Lu H., Kawazoe N., Chen G., 2014. Pore size effect of collagen scaffolds on cartilage regeneration. Acta Biomaterialia., 10, 2005–2013. DOI: 10.1016/j.actbio.2013.12.042.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3762464a-53e1-44cf-a14d-bb8b99fe2ab4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.