PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regional ionospheric model response of geomagnetic storm during March 2015 using data fusion mechanism: GPS, COSMIC RO and SWARM

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The total electron content (TEC) maps are chosen as the elementary structures to provide ionospheric corrections for improving the positional accuracy for Global Navigational Satellite Systems (GNSS) users. Availability of total electron content data from a multi-constellation of satellite systems and various ground-based instruments possess an ability to monitor, nowcast and forecast the behavior of the ionosphere region. Conversely, combining ionospheric TEC data from different temporal and spatial scales is a difficult task to augment either ground or space-based ionospheric model's accuracy. And hence, a method like data fusion is essential to illustrate the ionospheric variability and to improve the accuracy of ionospheric models under equatorial ionization anomaly (EIA) conditions. This paper presented the weighted least square data fusion method with multi-instrument TEC data to analyze the EIA TEC structures in the low-latitude Indian region. Both ground-based (GPS TEC from 26 stations in the Indian region) and space-based (FORMOSAT-3/COSMIC RO and SWARM mini satellite constellation) observations are used for the analysis. The spherical harmonic function (SHF) model of order 2, which gives nine SHF coefficients, is implemented. The analysis illustrates that the SHF coefficients followed by TEC data fusion would be useful to investigate the entry, occupancy and exit TEC structures of EIA during geomagnetic storm conditions.
Czasopismo
Rocznik
Strony
553--566
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Department of ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur District 522502, Andhra Pradesh, India
  • Department of ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur District 522502, Andhra Pradesh, India
Bibliografia
  • 1. Andong Hu, Li Z, Carter B, Wu S, Wang X, Norman R, Zhang K (2019) Helmert-VCE-aided fast-WTLS approach for global ionospheric VTEC modelling using data from GNSS, satellite altimetry and radio occultation. J Geod 93:877–888. https://doi.org/10.1007/s00190-018-1210-7
  • 2. Astafyeva E, Zakharenkova I, Förster M (2015) Ionospheric response to the 2015 St. Patrick’s Day storm: a global multi-instrumental overview. J Geophys Res Space Physics 120:9023–9037. https://doi.org/10.1002/2015JA021629
  • 3. Bilitza D (2001) International reference ionosphere 2000. Radio Sci 36(2):261–275. https://doi.org/10.1029/2000RS002432
  • 4. Cheng CZF, Kuo YH, Anthes RA, Wu L (2006) Satellite constellation monitors global and space weather. Eos Trans Am Geophys Union 87(17):166
  • 5. Chen P, Yao W, Zhu X (2015) Combination of ground and space-based data to establish a global ionospheric grid model. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2014.2333522
  • 6. Dettmering D, Schmidt M, Heinkelmann R, Seitz M (2011) Combination of different space-geodetic observations for regional ionosphere modeling. J Geodesy 85(12):989–998
  • 7. Han. L, H. Zhang, Y. Huang, M. Wang, W. Zhu, and J. Ping, (2006) Improving Klobuchar type ionospheric delay model using 2D GPS TEC over China. In Proc 36th COSPAR Science Assembly
  • 8. Hopkins J (1973) Computation of normalized associated Legendre functions using recursive relations. J Geophys Res 78(2):476–477
  • 9. Jin SG, Park J, Wang J, Choi B, Park P (2006) Electron density profiles derived from ground-based GPS observations. J Navig 59(3):395–401. https://doi.org/10.1017/S0373463306003821
  • 10. KumarM R, Sridhar M, Ratnam DV, Harsha PBS, Sri SN (2019) Estimation of ionospheric gradients and vertical total electron content using dual-frequency NAVIC measurements Astrophys. Space Sci 364(3):49
  • 11. Lin C, Matsuo T, Liu J, Lin C, Huba J, Tsai H, Chen C (2017) Data assimilation of ground-based GPS and radio occultation total electron content for global ionospheric specifcation. J Geophys Res Space Phys 122(10):10876–10886
  • 12. Lin C, Matsuo T, Liu J, Lin C, Tsai H, Araujo-Pradere E (2015) Ionospheric assimilation of radio occultation and ground-based GPS data using non-stationary background model error covariance. Atmos Meas Tech 8(1):171–182
  • 13. Mansilla GA (2019) Ionospheric disturbances at low and mid-low latitudes of the South American sector during the March 2015 great storm. Adv Space Res 63(11):3545–3557
  • 14. Menke. W, (1984) Geophysical data analysis: Discrete Inverse Theory. (Academic press, New York)
  • 15. Nava B, Coïsson P, Radicella SM (2008) A new version of the NeQuick ionosphere electron density model, December 2008. J Atmos Solar Terr Phys 70(15):1856–1862. https://doi.org/10.1016/j.jastp.2008.01.015
  • 16. Olsen N, Friis-Christensen E, Floberghagen R, Alken P, Beggan CD, Chulliat A, van den IJssel J (2013) The swarm satellite constellation application and research facility (SCARF) and swarm data products. Earth Planets Space 65(11):1
  • 17. Otsuka Y, Ogawa T, Saito A, Tsugawa T, Fukao S, Miyazaki S (2002) A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space 54(1):63–70. https://doi.org/10.1186/BF03352422
  • 18. Pasumarthi BSH, Devanaboyina VR (2020) Generation of assimilated indian regional vertical TEC maps. GPS Solut 24:21. https://doi.org/10.1007/s10291-019-0934-z
  • 19. Pasumarthiet al., (2020) Regional ionospheric TEC data assimilation and forecasting during geomagnetic storm conditions for 17th and 18th March 2015 days. In 2020 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)
  • 20. Pedatella NM, Lei J, Larson KM, Forbes JM (2009) Observations of the ionospheric response to the December 15th 2006 geomagnetic storm: long-duration positive storm effect. J Geophys Res Space Phys. https://doi.org/10.1029/2009JA014568
  • 21. Sahai.Y, P. Fagundes, F. Becker‐Guedes, M. Bolzan, J. Abalde, V. Pillat, et al., (2005) Effects of the major geomagnetic storms of October 2003 on the equatorial and low‐latitude F region in two longitudinal sectors. J Geophys Res Space Physics 110
  • 22. Schaer S., G. Beutler, M. Rothacher, and T. A. Springer, (1996) Daily global ionosphere maps based on GPS carrier phase data routinely produced by the code analysis center. In Proceedings of IGS AC Workshop. Silver Spring, MD 19–21
  • 23. Shen Y, Li B, Chen Y (2011) An iterative solution of weighted total least-squares adjustment. J Geodesy 85(4):229–238
  • 24. Schreiner W, Rocken C, Sokolovskiy S, Syndergaard S, Hunt D (2007) Estimates of the precision of GPS radio occultation from the COSMIC/FORMOSAT-3 mission. Geophys Res Lett 34(4):L04808
  • 25. Shukla AK, Shukla AP, Palsule VS, Das S (2013) Approach for near real-time prediction of ionospheric delay using klobuchar-like coefficients for Indian region. IET Radar Sonar Navigat 7(1):67–74
  • 26. Shukla AK, Das S, Nagori N, Sivaraman M, Bandyopadhyay K (2009) Two-shell ionospheric model for Indian region: a novel approach. IEEE Trans Geosci Remote Sens 47(8):2407–2412
  • 27. Srinivasan N, A. Ganeshan, and S. Mishra, (2012) A new grid based ionosphere algorithm for GAGAN using data fusion technique (ISRO GIVE modelmulti layer data fusion). In Proceedings of 39th COSPAR Science Assembly p 1876.
  • 28. Sun YY, Liu JY, Tsai HF, Krankowski A (2017) Global ionosphere map constructed by using total electron content from ground-based GNSS receiver and FORMOSAT-3/COSMIC GPS occultation experiment. GPS Solut 21(4):1583–1591
  • 29. Vardhan A, Pasumarthi BSH, Ratnam Venkata D, Upadhayaya AK (2020) Low latitude, Ionospheric response to March 2015 geomagnetic storm using multi-instrument TEC observations over India. Astrophys Space Sci 365:187. https://doi.org/10.1007/s10509-020-03900-8
  • 30. Venkata Ratnam D, Sarma AD (2012) Modeling of low-latitude ionosphere using GPS data with SHF model. IEEE Trans Geosci Remote Sens 50(3):972–980
  • 31. Venkatesh K, Tulasi Ram S, Fagundes PR, Seemala GK, Batista IS (2017) Electrodynamic disturbances in the Brazilian equatorial and low-latitude Ionosphere on St Patrick’s day storm of March 17th 2015. J Geophys Res Space Phys 122(4):4553–4570
  • 32. Yadav S, Sunda S, Sridharan R (2016) The impact of the 17 march 2015 St Patrick’s day storm on the evolutionary pattern of equatorial ionization anomaly over the indian longitudes using high-resolution spatiotemporal TEC maps: new insights. Space Weather 14:786–801. https://doi.org/10.1002/2016SW001408
  • 33. Zhang W, Zhao X, Jin S, Li J (2018) Ionospheric disturbances following the march 2015 geomagnetic storm from GPS observations in China. Geod Geodyn 9:288–295
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3759da5e-2ed2-4055-91dc-92357389890c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.