PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of compressive strength in light-weight self-compacting concrete by ANFIS analytical model

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Predykcja wytrzymałości na ściskanie lekkiego betonu samouszczelniającego wg modelu analitycznego ANFIS
Języki publikacji
EN
Abstrakty
EN
Light-weight Self-Compacting Concrete (LWSCC) might be the answer to the increasing construction requirements of slenderer and more heavily reinforced structural elements. However there are limited studies to prove its ability in real construction projects. In conjunction with the traditional methods, artificial intelligent based modeling methods have been applied to simulate the non-linear and complex behavior of concrete in the recent years. Twenty one laboratory experimental investigations on the mechanical properties of LWSCC; published in recent 12 years have been analyzed in this study. The collected information is used to investigate the relationship between compressive strength, elasticity modulus and splitting tensile strength in LWSCC. Analytically proposed model in ANFIS is verified by multi factor linear regression analysis. Comparing the estimated results, ANFIS analysis gives more compatible results and is preferred to estimate the properties of LWSCC.
PL
Lekki beton samouszczelniający (LWSCC) to połączenie betonu lekkiego (LWC) i samouszczelniającego (SCC) i posiada zarówno zalety, jak i wady obu typów betonu. Ze względu na złożony charakter i nieliniowe zachowanie LWSCC oraz dużą liczbę parametrów, które mają wpływ na wyniki analiz, tradycyjne metody mogą okazać się niewystarczające do określenia współzależności pomiędzy różnymi właściwościami LWSCC; jakkolwiek model ANFIS okazał się skuteczny, jeśli chodzi o określanie zależności pomiędzy parametrami w przypadku złożonych systemów technologicznych oraz materiałów. W opracowaniu wykorzystano znaczącą ilość danych eksperymentalnych, dotyczących tego nowego materiału budowlanego, w celu przeanalizowania zależności pomiędzy wytrzymałością na ściskanie (CS), wytrzymałością na rozciąganie (STS) oraz modułem sprężystości (EM). Dodatkowo, opracowano nowy model analityczny w ramach systemu rozmytego, który został też zweryfikowany przy pomocy zgromadzonych danych, jak również analizy regresji wieloczynnikowej. Zgromadzone dane umożliwiają także porównanie otrzymanych proporcji mieszanki LWSCC. Ponieważ w literaturze nie pojawiły się dotąd wskazówki w tym zakresie, porównanie takie może stać się doskonałym punktem wyjścia dla dalszych badań na temat właściwości LWSCC oraz składu mieszanki. Porównując wszystkie cechy charakterystyczne przy pomocy modelu ANFIS, opracowano model FIS przy zastosowaniu strukturę typu Sugento, funkcję przynależności w kształcie dzwonu oraz metodę optymalizacji hybrydowej.
Rocznik
Strony
53--72
Opis fizyczny
Bibliogr. 40 poz., il., tab.
Twórcy
  • University of Technology Sydney, Faculty of Civil and Environmental Engineering, Sydney, Australia
autor
  • University of Technology Sydney, Faculty of Civil and Environmental Engineering, Sydney, Australia
Bibliografia
  • 1. M. Imam, L. Vandewalle, F. Mortelmans, “Are current concrete strength tests suitable for high strength concrete?”, Materials and Structures 28: 384-391, 1995.
  • 2. P. Bamforth, D. Chisholm, J. Gibbs and T. Harris, “Properties of Concrete for use in Euro code 2”, The Concrete Centre, UK, 2008.
  • 3. B. Vakhshouri, S. Nejadi, “Application of Adaptive Neuro-Fuzzy Inference System in High Strength Concrete”, International Journal of Computer Applications 101(5): 39-48, 2014.
  • 4. L. Naderloo, R. Alimardani, M. Omid, F. Sarmadian, P. Javadikia, M.Y. Torabi, F. Alimardani, “Application of ANFIS to predict crop yield based on different energy inputs”, Measurement 45: 1406–1413, 2012.
  • 5. M.C. Nataraja, M.A. Jayaram, C.N. Ravikumar, A fuzzy-neuro model for normal concrete mix design”, Engineering Letters, 13(2): 98-107, 2006.
  • 6. S. Tesfamariam, H. Najjaran, “Adaptive network-fuzzy inferencing to estimate concrete strength using mix design”, Journal of Materials in Civil Engineering, 19(7): 550-560, 2007.
  • 7. M. Bilgehan, “Comparison of ANFIS and NN models with a study in critical buckling load estimation”, Nondestructive Testing and Evaluation, 26(1): 35-55, 2011.
  • 8. H. Tanyildizi and A. Coşkun, “Fuzzy logic model for prediction of compressive strength of light weight concrete made with Scoria aggregate and fly ash”, International Earthquake Symposium Kocaeli, Turkey, 22 26 October, 2007.
  • 9. T. Uyunoglu, O. Unal, “A new approach to determination of compressive strength of fly ash concrete using fuzzy logic”, Journal of Scientific and Industrial Research, 65: 894-899, 2006.
  • 10. F.A. Barrios Illidge, “Acoustic emission techniques and cyclic load testing load testing for integrity evaluation of self-compacting normal and self-compacting”, PhD thesis. University of South Carolina, USA, 2010.
  • 11. Y.J. Kim, Y.W. Choi, M. Lachemi, “Characteristics of self-consolidating concrete using two types of lightweight coarse aggregates”, Construction and Building Materials, 24(1): 11-16, 2010.
  • 12. E. Guneyisi, M. Gesoglu, E. Booya, “Fresh properties of self-compacting cold bonded fly ash lightweight aggregate concrete with different mineral admixtures”, Materials and Structures, 45(12): 1849-1859, 2012.
  • 13. O. Andic Cakır, E. Yogurtcu, S. Yazıcı, K. Ramyar, “Self-compacting lightweight aggregate concrete: design and experimental study”, Magazine of Concrete Research, 61(7): 519–527, 2009.
  • 14. H. Mazaheripour, S. Ghanbarpour, S.H. Mirmoradi, I. Hosseinpour, “The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete”, Construction and Building Materials, 25(1): 351–358, 2011.
  • 15. P.L. Domone, “Self-compacting concrete: An analysis of 11 years of case studies”, Cement and Concrete Composites, 28(2): 197–208, 2006.
  • 16. F.M. Almeida Filho, B.E. Barragan, J.R. Casas, A.L.H.C. El Debs, “Hardened properties of self-compacting concrete - A statistical approach”, Construction and Building Materials, 24(9): 1608–1615, 2010.
  • 17. J. Alexandre Bogas, A. Gomes, M.F.C. Pereira, “Self-compacting lightweight concrete produced with expanded clay aggregate”, Construction and Building Materials, 35:1013–1022, 2012.
  • 18. M.S. Anwar, A.W. Pramono, V.I. Judarta, A. Manaf, “The role of pumice in self-compacting lightweight aggregate concrete manufacture”, Asian Transactions on Basic and Applied Sciences (ATBAS), 2(4): 14-20, 2012.
  • 19. G. Pons, M. Mouret, M. Alcantara, J. L. Granju, “Mechanical behavior of self-compacting concrete with hybrid fiber reinforcement”, Materials and Structures, 40(2): 201-210, 2007.
  • 20. T.S. Babu, M.V. Seshagiri, R.D. Rama, “Mechanical properties and stress-strain behavior of self-compacting concrete with and without glass fibers”, Asian Journal of Civil Engineering (Building and Housing), 9(5): 457-472, 2008.
  • 21. O. Gencel, C. Ozel, W. Brostow and G. Martı´nez-Barrera, “Mechanical properties of self-compacting concrete reinforced with polypropylene fibers”, Materials Research Innovations, 15(3): 216-225, 2011.
  • 22. S.K. Ghosh, “High strength concrete in U.S codes and standards”, XIV Congreso Nacional de Ingeniería Estructural, 1-16, Acapulco, Gro, 2004.
  • 23. E. Joelianto, B. Rahmat, “Adaptive Neuro Fuzzy Inference System (ANFIS) with Error Back propagation Algorithm using Mapping Function”, International journal of artificial intelligence, 1(A08), 2008.
  • 24. C. Ozel, “prediction of compressive strength of concrete from volume ratio and Bingham parameters using adaptive neuro-fuzzy inference system (ANFIS) and data mining”, International Journal of Physical sciences, 6(31): 7078-7094, 2011.
  • 25. A. Sadrmomtazi, J. Sobhani, M.A. Mirgozar, “Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS”, Construction and Building Materials 42: 205–216, 2013.
  • 26. J. Sobhani, M. Najimi, A.R. Pourkhorshidi, T. Parhizkar, “Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models”, Construction and Building Materials, 24: 709–718, 2010.
  • 27. K. Kobayashi, “Characteristics of self-compacting concrete in fresh state with artificial light-weight aggregate”, Japanese Society of material science, 50(9): 1021-1027, 2001.
  • 28. C. Shi, Y. Wu, “Mixture proportioning and properties of self-consolidating lightweight concrete containing glass powder”, ACI Materials Journal, 102(5): 355-363, 2005.
  • 29. C.L. Hwang, M.F. Hung, “Durability design and performance of self-consolidating lightweight concrete”, Construction and building materials, 19: 619–626, 2005.
  • 30. B. Persson, “On the internal frost resistance of self-compacting concrete, with and without polypropylene fibers. Materials and Structures”, 39: 707–716, 2006.
  • 31. M. Hubertova, R. Hela, “The Effect of metakaolin and silica fume on the properties of lightweight self-consolidating concrete”, ACI publication; SP-243(3): 35-48, 2007.
  • 32. B.Z. Dymond, “Shear strength of a PCBT-53 girder fabricated with lightweight, Self-consolidating concrete”, Master's thesis, Virginia Polytechnic Institute and State University, 2007.
  • 33. D. Ward, “Performance of prestressed double-tee beams cast with lightweight self-consolidating concrete”, Master's thesis, University of Arkansas, USA, 2010.
  • 34. W.H. Yung, “Durability of self-consolidating lightweight aggregate concrete using dredged silt”, Construction and building materials, 23: 2332–2337, 2009.
  • 35. A.A. Maghsoudi, S.H. Mohamadpour, M. Maghsoudi, “Mix design and mechanical properties of selfcompacting light weight concrete”, International J. of Civil engineering, 9(3): 230-236, 2011.
  • 36. J. Bymaster, “Prestress losses in lightweight self-consolidating concrete”, Master thesis, University of Arkansas, USA, 2012.
  • 37. M. Kaffetzakis, C. Papanicolaou, “Mix Proportioning method for lightweight aggregate SCC (LWASCC) based on the optimum picking point concept”, Innovative Materials and Techniques in Concrete Construction, pp 131-151, 2012.
  • 38. O. Andiç-Çakır, S. Hızal, Influence of elevated temperatures on the mechanical properties and microstructure of self- consolidating lightweight aggregate concrete, Construction and building materials, 34: 575–583, 2012.
  • 39. S. Juradin, G. Baloevi´c, A. Harapin, “Experimental testing of the effects of fine particles on the properties of the self-compacting lightweight concrete”, Advances in Materials Science and Engineering, 2012: 1-8, 2012.
  • 40. M.N. Soutsos, G. Turuallo, K. Owens, J. Kwasny, S.J. Barnett, P.A.M. Basheer, “Maturity testing of lightweight self-compacting and vibrated concretes”, Construction and building materials, 47: 118–125, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37587ba6-7828-4e1c-ae8e-a476bb506370
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.