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Abstract
The aim of this research is to predict the yarn specific stress from fiber specific stress and 
fiber stress utilisation. In this paper a new approach is introduced to predict the specific 
stress-strain curves of cotton carded and combed yarns. The force on single fiber is worked out 
and these fiber forces are combined together to obtain forces acting on yarn. The theoretical 
model introduces the utilisation of fiber stress on the basis of the fiber specific stress-strain 
curve, twist angle, fiber directional distribution parameter C and contraction ratio. A com-
parison of experimental results suggests that the specific stress-strain curves predicted have 
reasonable agreement with the experimental yarn specific stress-strain curves for all types 
of yarns. Thus this model is valid to predict the specific stress-strain curves for carded and 
combed cotton ring spun yarns.

Key words: fiber stress utilisation, yarn specific stress, fiber specific stress, carded and 
combed cotton yarns.

Muhammad Zubair1*, 
Bohuslav Neckář1, 

Zulfiqar Ali Malik2

1 Department of Textile Technology,  
Faculty of Textiles, Technical University of Liberec

Czech Republic
* E-mail: zubair_fmd@yahoo.com

2 Department of Yarn Manufacturing,  
Faculty of Textile,  

National Textile University Faisalabad 
Pakistan

	 Introduction
The tensile strength, being an important 
quality parameter of yarn, has been wide-
ly studied and still comprises an exten-
sive part of literature on textile yam me-
chanics. Staple spun yarn study is con-
sidered important because of their bulk 
application in service fabrics. Therefore 
to understand the mechanical behaviour 
and predict the strength of staple spun 
yarns are very important from a technol-
ogy point of view.

However, study of the influence of yarn 
geometry on yarn performance is be-
coming exceedingly complicated due to 
difficulties in the investigation of fiber to 
fiber friction as well as the variation in 
internal pressure, fiber strength, length 
and crimp. Although staple spun yarns 
have a simple structure, they still possess 
very complex geometry, prominently in-
fluenced by the method of manufacture. 

The prediction of yarn properties from 
fiber properties and process parameters 
has been attempted by various research-
ers over the years. Research on the me-
chanical behavior of textile yams has 
been popular in the textile community 
and history of modern textile process-
ing machinery for two hundred years 
[1]. Nevertheless proper research work 
was conducted in the early 1900’s to es-
tablish theoretical relationships among 
fiber properties, textile structural factors 
and material behaviour. It can be dated 
back to the work of Gegauff [2], Gurney 
[3] and Peirce [4], as the foundation for 
modern textile mechanics. Sullivan [5] 

List of abbreviations:
εf	  Fiber strain
εY	  Yarn strain
βD	  Maximum twist angle
β	  Twist angle
η	  Contraction ratio
φg	  �Fiber stress utilisation from Gegauff 
s	  Fiber cross section area
FY	  �Component of fiber force in yarn 

direction
dr	  �Radius of differential annulus 

of yarn at elemental radius r.
D	  Yarn diameter
Z	  Yarn twist
PY	  Yarn axial force
Pf	  Fiber axial force
µ	  Yarn packing density

developed relations for yam strength, 
fiber properties and yam twist, but his 
theory was only applicable for low twist 
yarns. Platt [6] developed an equation 
for the strength of filament yarns and 
then modified it for staple yarns. Further-
more Gregory [7-9] modified Sullivan’s 
formula for calculation of the maxi-
mum strength. Hearle [10, 11] published 
a theory considering the lateral pres-
sure among fibers, where he assumed 
small strains, and that fiber deformation 
obeys Hooke’s law and there is no lat-
eral contraction. Later on he proved that 
it is possible to study the mechanics of 
staple yarns considering the effect of 
twist, fiber migration and discontinuities 
at fiber ends. Furthermore he modified 
his theoretical model for the strength of 
staple yarns and considered lateral con-
traction and large strains. Treloar [12] 
applied the rubber model and concluded 
that migration has a minor effect on the 
tensile strength of yarn. Zurek et al [13] 
developed a theoretical model for pre-
dicting yarn strength and strain from fib-
er fineness, length, stress and strain. Pan  
[14-16] developed a constitutive theo-
ry for short fiber twisted yarns with and 
without slippage and developed a rela-
tion for the strength of staple spun yarns. 
Gosh et al. [17] developed a mathemati-
cal model to predict the strength of spun 
yarns based on the failure mechanism of 
spun yarns. Most of these researchers 
established a mathematical approach to 
study the yarn structure from the fiber 
properties and process parameters. 

The main aim of this research is the 
prediction of yarn specific stress-strain 
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curves and their validation with experi-
mental results for staple spun carded and 
combed cotton yarns. In the theoretical 
part, Gegauff’s Equation (3) is modified 
to determine the utilisation of fiber stress 
at each value of strain. Furthermore the 
direct delta function was introduced in 
the derived Equation (16) to minimise 
the effect of the directional distribution 
of fiber in the yarn. A rapid and scientif-
ic approach has been introduced for the 
prediction of specific stress-strain curves 
for staple spun yarn before the process 
of breaking from knowledge of the fiber 
stress-strain curve and twist angle using 
Matlab software. 

	 Theoretical model
Fiber strain (εf) in an assembly of fibers 
twisted at some arbitrary angle can be cal-
culated using the following relation [2]:

[4], as the foundation for modem textile mechanics. Sullivan [5] developed relations for yam 

strength, fiber properties and yam twist, but his theory was only applicable for low twist yarns. 

Platt [6] developed an equation for the strength of filament yarns and then modified it for staple 

yarns. Furthermore Gregory [7, 8, 9] modified Sullivan’s formula for calculation of the 
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each value of strain. Furthermore the direct delta function was introduced in the derived equation 

(16) to minimise the effect of the directional distribution of fiber in the yarn. A rapid and 

scientific approach has been introduced for the prediction of specific stress-strain curves for 

staple spun yarn before the process of breaking from knowledge of the fiber stress-strain curve 

and twist angle using Matlab software.  

2. Theoretical model 

Fiber strain (𝜀𝜀f) in an assembly of fibers twisted at some arbitrary angle can be calculated using 

the following relation [2] 

  1 + ԑf 2 =  1 + 2ԑY   cos2 − sin2 + ԑY
2  cos2 + 2sin2                                      (1) 

On simplification: 

 

[4], as the foundation for modem textile mechanics. Sullivan [5] developed relations for yam 

strength, fiber properties and yam twist, but his theory was only applicable for low twist yarns. 

Platt [6] developed an equation for the strength of filament yarns and then modified it for staple 

yarns. Furthermore Gregory [7, 8, 9] modified Sullivan’s formula for calculation of the 

maximum strength. Hearle [10, 11] published a theory considering the lateral pressure among 

fibers, where he assumed small strains, and that fiber deformation obeys Hooke’s law and there 

is no lateral contraction. Later on he proved that it is possible to study the mechanics of staple 

yarns considering the effect of twist, fiber migration and discontinuities at fiber ends. 

Furthermore he modified his theoretical model for the strength of staple yarns and considered 

lateral contraction and large strains. Treloar [12] applied the rubber model and concluded that 

migration has a minor effect on the tensile strength of yarn. Zurek et al [13] developed a 

theoretical model for predicting yarn strength and strain from fiber fineness, length, stress and 

strain. Pan [14,15,16] developed a constitutive theory for short fiber twisted yarns with and 

without slippage and developed a relation for the strength of staple spun yarns. Gosh et al. [17] 

developed a mathematical model to predict the strength of spun yarns based on the failure 

mechanism of spun yarns. Most of these researchers established a mathematical approach to 

study the yarn structure from the fiber properties and  process parameters.  

The main aim of this research is the prediction of yarn specific stress strain curves and their 

validation with  experimental results for staple spun carded and combed cotton yarns. In the 

theoretical part, Gegauff’s equation (3) is modified to determine the utilisation of fiber stress at 

each value of strain. Furthermore the direct delta function was introduced in the derived equation 

(16) to minimise the effect of the directional distribution of fiber in the yarn. A rapid and 

scientific approach has been introduced for the prediction of specific stress-strain curves for 

staple spun yarn before the process of breaking from knowledge of the fiber stress-strain curve 

and twist angle using Matlab software.  

2. Theoretical model 

Fiber strain (𝜀𝜀f) in an assembly of fibers twisted at some arbitrary angle can be calculated using 

the following relation [2] 

  1 + ԑf 2 =  1 + 2ԑY   cos2 − sin2 + ԑY
2  cos2 + 2sin2                                      (1) 

On simplification: 

   (1)

On simplification:

εf + εf
2

2 = ԑY   cos2 − sin2 + ԑY
2

2  (cos2 + 2sin2)

It can be shown that at very low yarn strains (ca. 0 – 0.1), the second term on the right and left 

hand side in the expression above becomes negligible, while the first term is little affected. Then 

the expression above can be written as follows. 

εf = ԑY   cos2 − sin2                                                                                                          (2) 

Then, if we know the maximum twist angle (βD) in yarns, the fiber stress utilisation (𝜑𝜑g) can be 

calculated using the following, well known, Gegauff’s equation. 

𝜑𝜑g =  1 + η cos2βD +  η(ln cos 2 βD )
tan 2 βD

                                                                                           (3) 

At η = 0, the equation above is reduced to

𝜑𝜑g = cos2βD                                                                                                                               (4) 

Equations (3) and (4) can be used to calculate fiber stress utilisation at the maximum twist level 

when the strains are small. To calculate the fiber stress utilisation at different strains, the theory 

has been modified as below. According to Hooke’s law, stress  is directly proportional to stain 

i.e. 

   =  𝐸𝐸. f                                                                                                                                   (5) 

Since the above relationship holds up to the elastic limit only, a general relation that relates fiber 

stress to strain over the whole range of strains can be written as:                                                                        

  𝜎𝜎f  =  f (f)                                                                                                                              (6) 

If the yarn is subjected to a tensile force (F), the force on the constituting individual fibers of 

cross section area s is: 

𝐹𝐹 = 𝜎𝜎f. 𝑠𝑠 =  𝑠𝑠. f f                                                                                                                      (7) 

If the fibers lie at some angle (β), the component of force in the direction of the yarn axis is: 

   𝐹𝐹Y  =  𝐹𝐹 cos  =  f f  . 𝑠𝑠. cos                                                                                             (8) 
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Then, if we know the maximum twist an-
gle (βD) in yarns, the fiber stress utilisa-
tion (φg) can be calculated using the fol-
lowing, well known, Gegauff’s equation:

packing density of yarn, µ, can be deter-
mined as follows:

Since the effective fiber cross-sectional area s  of one fiber in the yarn cross-section, illustrated 

in the Figure 1, is:  

s∗ =  s / cos                                                                                                                             (9)  

A
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Figure 1 One fiber element 

The normal fiber stress in yarn in this vector area may be calculated using the following equation 

 Y  =  𝐹𝐹Y
𝑠𝑠∗  = f(f )s.cos 

 𝑠𝑠 / cos   =  f f . cos2                                                                                 (10)                                                                              

The area of differential annulus of yarn, as shown in Figure 2, is 2𝜋𝜋rdr. Then the packing density 

of yarn, , can be determined as follows. 

 = total  area  of  fiber  sections
total  area  of  yarn  section  =

d𝑆𝑆
2π𝑟𝑟d𝑟𝑟

Where dS is the area of the fiber section in the differential annulus of the yarn. Therefore we can 

rearrange the equation above as follows.

dS = (2𝜋𝜋rdr)                                                                                                     (11) 

Dr
dr

Figure 2 Differential layer in the yarn cross-section. 

The resultant yarn axial force is then a sum of the forces experienced by individual fibers 

integrated over the whole yarn diameter: 

Where dS is the area of the fiber section 
in the differential annulus of the yarn. 
Therefore we can rearrange the equation 
above as follows:

dS = (2πrdr) µ     (11)

The resultant yarn axial force is then 
a sum of the forces experienced by in-
dividual fibers integrated over the whole 
yarn diameter: 
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The r and dr may be defined in terms of the twist angle (β) as below:
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Substitution of r and dr into equation (11) and subsequent rearrangement yields the following:

                                            𝑃𝑃Y   =   f f . cos2.  2πμD
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On simplification and rearrangement, the resultant yarn axial force is: 

𝑃𝑃Y  =  2  𝐷𝐷
2 tan βD
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Although tanβ is analytical, the stress-strain function is not so; therefore the equation above can 

only be solved using numerical methods. The fiber stress f (𝜀𝜀f) can be determined at any strain 

from the fiber stress strain curve using interpolation techniques. At a certain yarn strain (εY ),

𝜀𝜀f can be calculated from zero to maximum twist angles using equation (2). 

On substitution of 𝜀𝜀f in Eq. (13), the resultant axial force in the twisted-fiber-bundle i.e. yarn is 

calculated over the whole spectrum of strain values. 

At the same yarn strain 𝜀𝜀Y  =  𝜀𝜀f , a yarn of the same fineness has the same substantial cross-

sectional area, and hence the axial force in the parallel fiber is as below 

  𝑃𝑃f  =  f . S  = f εY  .  
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From equations (11) and (12), the fiber stress utilisation, 𝜑𝜑c1(𝜀𝜀Y ), of the twisted yarn at a certain 

twist angle can be calculated over the whole range of strains:  
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It can be shown that at very low yarn strains (ca. 0 – 0.1), the second term on the right and left 

hand side in the expression above becomes negligible, while the first term is little affected. Then 

the expression above can be written as follows. 
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Figure 1 One fiber element 

The normal fiber stress in yarn in this vector area may be calculated using the following equation 

 Y  =  𝐹𝐹Y
𝑠𝑠∗  = f(f )s.cos 

 𝑠𝑠 / cos   =  f f . cos2                                                                                 (10)                                                                              

The area of differential annulus of yarn, as shown in Figure 2, is 2𝜋𝜋rdr. Then the packing density 

of yarn, , can be determined as follows. 

 = total  area  of  fiber  sections
total  area  of  yarn  section  =

d𝑆𝑆
2π𝑟𝑟d𝑟𝑟

Where dS is the area of the fiber section in the differential annulus of the yarn. Therefore we can 

rearrange the equation above as follows.

dS = (2𝜋𝜋rdr)                                                                                                     (11) 

Dr
dr

Figure 2 Differential layer in the yarn cross-section. 

The resultant yarn axial force is then a sum of the forces experienced by individual fibers 

integrated over the whole yarn diameter: 
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can be determined at any strain from the 
fiber stress-strain curve using interpolation 
techniques. At a certain yarn strain (εY), εf 
can be calculated from zero to maximum 
twist angles using Equation (2).

On substitution of εf in Equation (13), 
the resultant axial force in the twist-
ed-fiber-bundle i.e. yarn is calculated 
over the whole spectrum of strain val-
ues.

At the same yarn strain εY
 = εf, a yarn 

of the same fineness has the same sub-
stantial cross-sectional area, and hence 
the axial force in the parallel fiber is as 
below:
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Substitution of r and dr into equation (11) and subsequent rearrangement yields the following:
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On simplification and rearrangement, the resultant yarn axial force is: 
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Although tanβ is analytical, the stress-strain function is not so; therefore the equation above can 

only be solved using numerical methods. The fiber stress f (𝜀𝜀f) can be determined at any strain 
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   σf (εY )  tan 2 βD
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Where σf (εf) represents fiber stress as 
a function of the fiber strain and σf (εf) 
stands for the fiber stress as a function of 
the yarn strain.

The direct delta function was introduced 
in Equation (16) for the directional dis-
tribution of fibers in the yarn and Equa-
tion (13) is modified for fiber stress utili-
sation, φc2(εY) as follows:
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C is a measure of the directional distribution of fiber angles in the yarn.                                          

The yarn strain 𝜀𝜀Y  and fiber strain 𝜀𝜀f are small and are related to the equation as follows. 

     𝜀𝜀f =  𝜀𝜀Y (cos2θ− sin2θ), θ ∈ (0 , π/2)                                                                         (19) 

The unimodel probability density function, 𝑈𝑈(ϑ), of non-oriented angles ϑ ∈ (0, 𝜋𝜋2) was derived 

earlier by Neckar et al. [18,19]. Fibers with angles  approaching 𝜋𝜋2 are  found in the yarn 

structure only very seldomly, however, they were identified by experimental analysis of the 

internal structure of yarns. 

There exists an upper limit of angle θ = θu  by which the fiber strain is equal to zero, i.e. 𝜀𝜀f = 0. 

Thus it is valid to write 

                                              0 = 𝜀𝜀Y (cos2θu − sin2θu)

θu = arc sin 1
 (1+)         

If θ ∈ (θu , /2) then the fiber strain is negative according to equation (19), where the fiber 

should be axially compressed and will not be active, and consequently the range of such angles is 

neglected. The calculation scheme for the utilisation of yarn stress is given in  Figure 3. 
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C is a measure of the directional distribution of fiber angles in the yarn.                                          

The yarn strain 𝜀𝜀Y  and fiber strain 𝜀𝜀f are small and are related to the equation as follows. 
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The unimodel probability density function, 𝑈𝑈(ϑ), of non-oriented angles ϑ ∈ (0, 𝜋𝜋2) was derived 

earlier by Neckar et al. [18,19]. Fibers with angles  approaching 𝜋𝜋2 are  found in the yarn 

structure only very seldomly, however, they were identified by experimental analysis of the 

internal structure of yarns. 

There exists an upper limit of angle θ = θu  by which the fiber strain is equal to zero, i.e. 𝜀𝜀f = 0. 

Thus it is valid to write 

                                              0 = 𝜀𝜀Y (cos2θu − sin2θu)

θu = arc sin 1
 (1+)         

If θ ∈ (θu , /2) then the fiber strain is negative according to equation (19), where the fiber 

should be axially compressed and will not be active, and consequently the range of such angles is 

neglected. The calculation scheme for the utilisation of yarn stress is given in  Figure 3. 
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If θ ϵ (θu, π/2) then the fiber strain is neg-
ative according to Equation (19), where 
the fiber should be axially compressed 
and will not be active, and consequent-
ly the range of such angles is neglected. 
The calculation scheme for the utilisation 
of yarn stress is given in Figure 3.

The fiber stress utilisation, φc2(εY), evalu-
ated from Equation (17) was finally used 
to determine the yarn specific stress as 
a function of yarn strain, δY(εY) as follows:

The fiber stress utilisation, 𝜑𝜑c2  𝜀𝜀Y  , evaluated from equation (17) was finally used to determine 

the yarn specific stress as a function of yarn strain, 𝛿𝛿Y (𝜀𝜀Y ) as follows. 

𝛿𝛿Y (𝜀𝜀Y) =  𝜑𝜑c2 (𝜀𝜀Y ).𝛿𝛿f (𝜀𝜀f)                                                                          (20) 

Where  𝛿𝛿f (𝜀𝜀f) is the fiber specific stress as a function of the strain.                     

3. Experimental Results 

3.1 Material 

Two types of cotton roving (one from carded and the other - combed sliver produced at Masood 

Textile Mills Ltd., Faisalabad Pakistan) were used to produce yarn with two linear densities. The 

same type of cotton was used in both rovings.  The yarn was produced on a sample ring frame at

the National Textile University, Faisalabad. Cotton fibers of 1.5 dtex fineness with a staple 

length of 25~30 mm were taken randomly from these rovings to measure the fiber tenacity and 

elongation. 

3.2 Method

Fibers from random positions of roving were tested on a Vibrodyn-400 to measure the fiber 

strength, fineness and elongation according to the standard test procedure CSN-ENISO 1973. 

Stress strain curves were also obtained from fifty cotton fibers taken randomly from these 

rovings.  

Each type of carded and combed cotton yarn was tested on as Instron-4411 according to the 

standard method CSN-ENISO 2060 to measure force and elongation. A total of fifty tests were 

conducted to obtain the average stress strain curves for each type of carded and combed yarns.  

The yarn fineness was measured according to standard test method CSN 80 00 50. The yarn 

diameter was measured according to the standard test method interni norma C.22.102-01/01, and 

the yarn twist was measured according to the standard test method CSN 80 07 01. The yarn 

linear densities, yarn twist and twist angle (tanβD = 𝜋𝜋𝜋𝜋𝜋𝜋) for both types of carded and combed 

cotton yarns are presented in Table 1.  

   (20)

Where δf(εf) is the fiber specific stress as 
a function of the strain. 
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frame at the National Textile University, 
Faisalabad. Cotton fibers of 1.5 dtex fine-
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measure the fiber tenacity and elongation. 

Method
Fibers from random positions of roving 
were tested on a Vibrodyn-400 (Lenzing 
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Each type of carded and combed cot-
ton yarn was tested on as Instron-4411 
(USA) according to the standard meth-
od CSN-ENISO 2060 to measure force 
and elongation. A total of fifty tests were 
conducted to obtain the average stress-
strain curves for each type of carded and 
combed yarns. 

The yarn fineness was measured ac-
cording to standard test method CSN 
80 00 50. The yarn diameter was meas-
ured according to the standard test meth-
od interni norma C.22.102-01/01, and 
the yarn twist was measured according to 
the standard test method CSN 80 07 01. 
The yarn linear densities, yarn twist and 
twist angle (tanβD = πDZ) for both types 
of carded and combed cotton yarns are 
presented in Table 1.

	 Results and discussions
Average curves
The average specific stress-strain curves 
for fiber and yarns from fifty samples 
were plotted using Matlab software and 
linear interpolation. The average curves 
for fiber as well as carded and combed 
yarn are shown in Figure 4. The shape 
of specific stress-strain curves for cotton 
fiber and yarns was similar. All carded 
and combed yarn curves are under the 
fiber specific stress-strain curves because 
of discontinuities in the staple spun yarn. 

The combed cotton yarn curves lie at 
a slightly higher position as compared 
with the carded yarn due to improved fib-
er length and migration in that yarn. 

Fiber stress utilisation 
The fiber stress utilization for each type 
of yarn was determined from the data 
given in Table 1. The contraction ratio η 
was taken as 0.5. Equation (17), follow-
ing the calculation scheme in Figure 3, 
was solved numerically using Matlab 
software to obtain the fiber stress utilisa-
tion for each type of yarn. The parameter 
C = 4.9 was taken for each carded cotton 
yarn, while for combed the higher value 
of C = 10 was used.

The higher value of the directional distri-
bution parameter for combed yarns was 
due to improved fiber length and migra-
tion in that yarn due to the combing pro-
cess. The fiber stress utilization curves 
predicted for each type of yarn are shown 
in Figure 5.The higher fiber stress utili-
sation in the region of lower strain might 
be the contribution of all fibers in the 
yarn. As the yarn strain is increased, the 
number of contributing fibers is reduced 
due to the slippage and straightening 
of the fibers. At the same time, the fib-
er which is in a proper grip of the yarn 
structure from both ends starts to extend. 
When the strain is further increased, the 
majority of fibers slip, which reduces 

Table 1. Yarn specifications.

Yarn type
Actual yarn linear density Yarn diameter Yarn twist Twist angle

T, tex D, mm Z, m-1 βD

Carded yarn
46.80 0.270 532 24.2
44.64 0.262 520 23.2

Combed yarn
36.00 0.244 580 23.4
43.98 0.260 520 23.2

fiber stress utilization and the gripped 
fibers start bearing the stress. After this 
stage the polymer chains of the fiber start 
to be oriented and thus bear better stress. 
Later on fiber polymer chains start break-
ing due to higher strain near the point of 
break. 

Yarn specific stress
Using Equation (20), the yarn specif-
ic stress, δY(εY) was predicted from the 
fiber stress utilisation for each cotton 
yarn, φc2(εY) and the average fiber specif-
ic stress-strain, δf(εf). The predicted and 
experimental yarn specific stress-strain 
curves before breaking for each type of 
carded cotton yarn are shown in Figure 6 
(a) and (b).

The predicted yarn specific stress-strain 
curve agreed well with experimental yarn 
specific stress-strain curves both in shape 
and position for carded and combed cot-
ton yarns. Liu et al. [20] reported a sim-
ilar conclusion for the measurement of 
fiber and yarn strains, and they studied the 
stress-strain relationship beyond a strain 
of 1%. Therefore the theoretical relations 
are not fully valid in the region of very 
small strains due to relative variation in 
the process of measurement or fiber crimp. 

	 Conclusion
The experimental yarn specific stress-
strain curves for carded cotton yarn are 
low when compared with combed cotton 
yarn due to improved fiber properties 
during the combing process. A higher 
value of parameter C for combed cotton 
yarn was used to predict fiber stress utili-
sation, which might be due to good fiber 
directional distribution, better fiber mi-
gration and longer fiber in combed yarn. 
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ends  starts to extend. When the strain is further increased, the majority of  fibers  slip, which 
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Figure 4. Specific stress-strain curves for cotton fiber and yarns.
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Figure 6. a) Yarn specific stress-strain curves for carded cotton yarns, b) Yarn specific stress-strain curves for combed cotton yarns.

The yarn specific stress-strain curves pre-
dicted agreed well with the experimental 
yarn specific stress for both carded and 
combed yarns. The model predicts the 
yarn specific stress before the process of 
breaking when all the fibers in the yarn 
are working. At the moment we are not 
able to predict the yarn specific stress up 
to the point of break. It might be possible 
in the future to evaluate the yarn specific 
stress up to the breaking point consid-
ering the slippage effect due to friction 
among the fibers, variability in the break-
ing stress and strain in fibers as well as 
the fiber crimp.
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Figure 6 (b): Yarn specific stress strain curves for combed cotton yarns

Conclusion

The experimental yarn specific stress strain curves for carded cotton yarn are low when 

compared with  combed cotton yarn due to  improved fiber properties during the combing 

process. A higher value of parameter C for combed cotton yarn was used to predict  fiber stress 

utilisation, which might be due to good fiber directional distribution, better fiber migration and 

longer fiber in combed yarn. The yarn specific stress strain curves predicted agreed well the 

experimental yarn specific stress for both carded and combed yarns. The model predicts the yarn 

specific stress before the process of breaking when all the fibers in the yarn are working. At the 

moment we are not able to predict the yarn specific stress up to the point of break. It might be 

possible in the future to evaluate the yarn specific stress up to the breaking point considering the 

slippage effect due to friction among the fibers, variability in the breaking stress and strain in 

fibers as well as that in the fiber crimp.   
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Figure 5: Predicted fiber stress utilisation in cotton yarns 

The predicted yarn specific stress strain curve agreed well with experimental yarn specific stress 

strain curves both in shape and position for carded and combed cotton yarns. Liu et al. [20] 

reported a similar conclusion for the measurement of fiber and yarn strains, and they studied the 

stress-strain relationship beyond a strain of 1 %. Therefore the theoretical relations are not fully 

valid in the region of very small strains due to relative variation in the process of measurement or 

fiber crimp.  

Figure 6 (a): Yarn specific stress strain curves for carded cotton yarns 
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Figure 6 (b): Yarn specific stress strain curves for combed cotton yarns

Conclusion

The experimental yarn specific stress strain curves for carded cotton yarn are low when 

compared with  combed cotton yarn due to  improved fiber properties during the combing 

process. A higher value of parameter C for combed cotton yarn was used to predict  fiber stress 

utilisation, which might be due to good fiber directional distribution, better fiber migration and 

longer fiber in combed yarn. The yarn specific stress strain curves predicted agreed well the 

experimental yarn specific stress for both carded and combed yarns. The model predicts the yarn 

specific stress before the process of breaking when all the fibers in the yarn are working. At the 

moment we are not able to predict the yarn specific stress up to the point of break. It might be 

possible in the future to evaluate the yarn specific stress up to the breaking point considering the 

slippage effect due to friction among the fibers, variability in the breaking stress and strain in 

fibers as well as that in the fiber crimp.   
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Figure 5: Predicted fiber stress utilisation in cotton yarns 

The predicted yarn specific stress strain curve agreed well with experimental yarn specific stress 

strain curves both in shape and position for carded and combed cotton yarns. Liu et al. [20] 

reported a similar conclusion for the measurement of fiber and yarn strains, and they studied the 

stress-strain relationship beyond a strain of 1 %. Therefore the theoretical relations are not fully 

valid in the region of very small strains due to relative variation in the process of measurement or 

fiber crimp.  

Figure 6 (a): Yarn specific stress strain curves for carded cotton yarns 
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