PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanohardness and elasticity of cell walls of Scots pine (Pinus sylvestris L.) juvenile and mature wood

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to determine the hardness and reduced modulus of elasticity of juvenile wood of Scots pine (Pinus sylvestris L.) using the nanoindentation method, and then to compare the results obtained with those of mature wood. The hardness of juvenile pine wood determined by means of the nanoindentation method was 0.444 GPa while for mature wood it was 0.474 GPa. Statistically significant differences between the values were found. The reduced modulus of elasticity in juvenile wood was 14.0 GPa and 16.4 GPa in mature wood. Thus, the hardness values obtained were about 7% higher, while the modulus of elasticity was 17% higher in mature wood. All determinations were made in the S2-layer of the secondary cell wall.
Rocznik
Strony
1237--1241
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Department of Wood Science and Thermal Technics, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-627 Poznań, Poland
autor
  • Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
Bibliografia
  • [1] K.P. Mróz, S. Kucharski, K. Doliński, A. Bigos, G. Mikułowski, E. Beltowska-Lehman, and P. Nolbrzak, “Failure modes of coatings on steel substrate”, Bull. Pol. Ac.: Tech. 64(1), 249‒256 (2016).
  • [2] R. Major, P. Lacki, J.M. Lackner, and B. Major, “Modelling of nanoindentation to simulate thin layer behaviour”, Bull. Pol. Ac.: Tech. 54(2), 189‒198 (2006).
  • [3] W. Orłowicz, M. Mróz, M. Tupaj, A. Trytek, M. Jacek, and M. Radoń, “Morphology and Material Properties of Carbides in High (24%) Chromium Cast Iron”, Arch. Foundry Eng. 18(1), 77‒80 (2018).
  • [4] R. Wimmer, B.N. Lucas, W.C. Oliver, and T.Y. Tsui, “Longitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoindentation technique”, Wood Sci Technol 31, 131‒141 (1997).
  • [5] W. Gindl, H.S. Gupta, T. Schoberl, H.C. Lichtenegger, and P. Fratzl, “Mechanical properties of spruce wood cell walls by nanoindentation”, Appl. Phys. A 79, 2069‒2073 (2004).
  • [6] Y. Wu, S. Wang, D. Zhou, C. Xing, Y. Zhang, and Z. Cai, “Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation”, Bioresour. Technol. 101, 2867‒2871 (2010).
  • [7] Y. Yu, B. Fei, B. Zhang, and X. Yu, “Cell-wall mechanical properties of bamboo investigated by in-situ imaging nanoindentation”, Wood Fiber Sci 39, 527‒535 (2007).
  • [8] W. Gindl and H.S. Gupta, “Cell-wall hardness and Young’s modulus of melamine-modified spruce wood by nano-indentation”, Compos Part A-Appl S 33, 1141‒1145 (2002).
  • [9] Y. Huang, B. Fei, Y. Yu, S. Wang, Z. Shi, and R. Zhao, “Modulus of elasticity and hardness of compression and opposite wood cell walls of masson pine”, BioResources 7(3) 3028‒3037 (2012).
  • [10] B. Vincent, Q. Tong, N. Terziev, G. Daniel, C. Bustos, W.E. Escobar, and I. Duchesne, “A comparison of nanointendation cell wall hardness and Brinell wood harness in jack pine (Pinus banksiana Lamb.)”, Wood Sci Technol. 48(1), 7‒22 (2014).
  • [11] A.R. Spurr, “A low-viscosity epoxy resin embedding medium for electron microscopy”, J Ultra Res. 26, 31‒43 (1969).
  • [12] S.H. Lee, S.Q. Wang, G.M. Pharr, M. Kant, and D. Penumadu, “Mechanical properties and creep behavior of lyocell fibers by nanoindentation and nano-tensile testing”, Holzforschung 61, 254‒260 (2007).
  • [13] H.H. Wang, Drummond J.G., S.M. Reath, K. Hunt, and P.A. Watson, An improved fibril angle measurement method for wood fibres. Wood Sci. Technol. 34: 493‒503 (2001).
  • [14] E. Fabisiak and P. Mania, “Variation in the Microfibril Angles in Resonance and Non-Resonance Spruce Wood (Picea abies [L.] Karst.)”, BioResources 11(4), 8496‒8508 (2016).
  • [15] F. Kollmann, W.A. Côté, Principles of wood science and technology, B. Heideberg, 1968.
  • [16] A. Jäger, T. Bader, K. Hofstetter, and J. Eberhardsteiner, “The relation between indentation modulus, microfibril angle, and elastic properties of wood cell walls”, Composites: Part A 42(6), 677‒685 (2011).
  • [17] I.D. Cave, “Modeling the structure of the softwood cell wall for computation of mechanical properties”, Wood Sci. Technol. 10(1), 19‒28 (1976).
  • [18] J.M. Dinwoodie, Timber, its nature and behaviour, Van Nostrand Reinhold Co. Ltd, 1981.
  • [19] I.D. Cave and J.C.F. Walker, “Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle”, Forest Prod. J. 44(5), 43‒48 (1994).
  • [20] A. Reiterer, H. Lichtenegger, S.E. Stanzl-Tschegg, and P. Fratzl, “Experimental evidence for a mechanical function of the cellulose spiral angle in wood cellulose walls”, Philos. Mag. A 79, 2173‒2186 (1999).
  • [21] E. Roszyk, P. Mania, and W. Moliński, “The influence of microfibril angle on creep of wood under tensile stress along the grains”, Wood Res-Slovakia 57(3), 347 – 358 (2012).
  • [22] L.A. Donaldson, “Within- and between-tree variation in microfibril angle in Pinus radiate”, N. Z. J. Forest. Sci. 22, 77‒86 (1992).
  • [23] H. Lichtenegger, A. Reiterer, S. Stanzl-Tschegg, and P. Fratzl, “Variation of cellulose microfibril angles in softwoods and hardwoods – a possible strategy of mechanical optimization”, J. Struct. Biol. 128, 257‒269 (1999).
  • [24] J.R. Barnett and V.A. Bonham, “Cellulose microfibril angle in the cell wall of wood fibres”, Biological Reviews. 79(2), 461‒472 (2004).
  • [25] E. Fabisiak and W. Moliński, “Variation in the microfibril angle within individual annual rings in wood of larch (Larix decidua Mill.) from plantation culture”, Ann. WULS SGGW For. Wood Technol. 61, 207‒213 (2007).
  • [26] C.L. Lee, “Crystallinity of wood cellulose fibers”, For. Prod. J. 11, 108‒112 (1961).
  • [27] Y.T. Wu and J.W. Wilson, “Lignification within coniferous growth zones”, Pulp Pap. Mag. Can. 68(4), 159‒164 (1967).
  • [28] W. Gindl, M. Grabner, and R. Wimmer, “The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width”, Trees 14(7), 409‒414 (2000).
  • [29] L.A. Donaldson, “Seasonal changes in lignin distribution during tracheid development in Pinus radiata D. Don”, Wood Sci. Technol. 25, 15‒24 (1991).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37572701-2c78-4f27-acbf-7eefc80774b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.