PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved Matlab/Simulink model of dual three-phase fractional slot and concentrated winding PM motor for EV applied brushless DC drive

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of electric vehicles (EV) necessitates the search for new solutions for configuring powertrain systems to increase reliability and efficiency. The modularity of power supplies, converters, and electrical machines is one such solution. Among modular electric machines, dual three-phase (DTP) motors are the most common in high-power drives. To simplify low and medium power drives for EVs based on DTP PM motor, it is proposed to use a BLDC drive and machine of the simplest design - with concentrated windings and surface mounted PMs on the rotor. To study and create such drives, an improved mathematical model of DTP PM machine was developed in this work. It is based on the results of 2D FEM modeling of the magnetic field. According to the developed method, the dependences of the self and mutual inductances between all phase windings from the angle of rotor position and loads of different motor modulus were determined. Based on these inductances, the circuit computer model of DTP PM machine was created in the Matlab/Simulink. It has a high simulation speed and a high level of adequacy, which is confirmed by experimental studies with a mock-up sample of the electric drive system.
Rocznik
Strony
677--707
Opis fizyczny
Bibliogr. 32 poz., fot., rys., tab., wzory
Twórcy
autor
  • Department of Electric Mechatronics and Computer-Controlled Electromechanical Systems, Lviv Polytechnic National University, Lviv 79013, Ukraine
autor
  • Department of Electrical Engineering and Fundamentals of Computer Science, Rzeszow University of Technology, Rzeszów 35-959, Poland
  • Department of Electric Mechatronics and Computer-Controlled Electromechanical Systems, Lviv Polytechnic National University, Lviv 79013, Ukraine
  • Faculty of Electrical Engineering, Czestochowa University of Technology, Częstochowa 42-200, Poland
  • Department of Electric Mechatronics and Computer-Controlled Electromechanical Systems, Lviv Polytechnic National University, Lviv 79013, Ukraine
  • Department of Electric Mechatronics and Computer-Controlled Electromechanical Systems, Lviv Polytechnic National University, Lviv 79013, Ukraine
  • Department of Electrical Engineering and Fundamentals of Computer Science, Rzeszow University of Technology, Rzeszów 35-959, Poland
  • Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Rzeszów 35-959, Poland
Bibliografia
  • [1] T.A. Skouras, P.K. Gkonis, C.N. Ilias, P.T. Trakadas, E.G. Tsampasis and T.V. Zahariadis: Electrical vehicles: current state of the art, future challenges, and perspectives. Clean Technologies, 2, (2020), 1-16. DOI: 10.3390/cleantechnol2010001.
  • [2] A. Stippich, C.H. van der Broeck, A. Sewergin and A.H. Wienhausen: Key components of modular propulsion systems for next generation electric vehicles. CPSS Transactions Power Electronics and Applications, 2, (2017), 249-258. DOI: 10.24295/CPSSTPEA.2017.00023.
  • [3] A. Galassini, A. Costabeber, C. Gerada, G. Buticchi and D.A. Barater: Modular speed-drooped system for high reliability integrated modular motor drives. IEEE Transactions Industry Application, 52, (2016), 3124-3132. DOI: 10.1109/TIA.2016.2540608.
  • [4] I. Shchur and V. Turkovskyi: Integrated system of modular power supply and multilevel control of brushless DC motor for electric vehicles. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, (2020), 107-115. DOI: 10.33271/nvngu/2020-6/068.
  • [5] A. Salem and M.A. Narimani: Review on multiphase drives for automotive traction applications. IEEE Transactions Transportation Electrification, 5, (2019), 1329-1348. DOI: 10.1109/TTE.2019.2956355.
  • [6] F. Barrero and M.J. Duran: Recent advances in the design, modeling, and control of multiphase machines, Part I. IEEE Transactions Industrial Electronics, 63(1), (2015), 449-458. DOI: 10.1109/TIE.2015.2447733.
  • [7] A. Negahdari, A.G. Yepes, J. Doval-Gandoy and H.A. Toliyat: Efficiency enhancement of multiphase electric drives at light-load operation considering both converter and stator copper losses. IEEE Transactions Power Electronics, 34, (2019), 1518-1525. DOI: 10.1109/TPEL.2018.2830310.
  • [8] V.I. Patel, J. Wang, D.T. Nugraha, R. Vuletić and J. Tousen: Enhanced availability of drivetrain through novel multiphase permanent-magnet machine drive. IEEE Transactions Industrial Electronics, 63(1), (2016), 469-480. DOI: 10.1109/TIE.2015.2435371.
  • [9] W. Zhao, L. Xu and G. Liu: Overview of permanent-magnet fault-tolerant machines: Topology and design. CES Transactions Electrical Machines and Systems, 2, (2018), 51-64. DOI: 10.23919/TEMS.2018.8326451.
  • [10] M. Zabaleta, E. Levi and M. Jones: Modelling approaches for an asymmetrical six-phase machine. 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, (2016), 173-178. DOI: 10.1109/ISIE.2016.7744885.
  • [11] P. Zheng, F. Wu, Y. Lei, Y. Sui and B. Yu: Investigation of a novel 24-slot/14-pole six-phase fault-tolerant modular permanent-magnet in-wheel motor for electric vehicles. Energies, 6, (2013), 4980-5002. DOI: 10.3390/en6104980.
  • [12] G.J. Li, B. Ren and Z.Q. Zhu: Design guidelines for fractional slot multiphase modular permanent magnet machines. IET Electric Power Applications, 11, (2017), 1023-1031. DOI: 10.1049/iet-epa.2016.0616.
  • [13] Y. Yokoi, T. Higuchi and Y. Miyamoto: General formulation of Winding factor for fractional-slot concentrated winding design. IET Electric Power Application, 10, (2016), 231-239. DOI: 10.1049/iet-epa.2015.0092.
  • [14] S. Kallio, M. Andriollo, A. Tortella and J. Karttunen: Decoupled d-q model of double-star interior-permanent-magnet synchronous machines. IEEE Transactions Industrial Electronics, 60, (2013), 2486-2494. DOI: 10.1109/TIE.2012.2216241.
  • [15] D. Boudana, L. Nezli, A. Tlemçani, M. Mahmoudi, M. Djemai and M. Tadjine: Backstepping/DTC control of a double star synchronous machine drive. Archives of Control Sciences, 2, (2010), 227-247. DOI: 10.2478/v10170-010-0015-6.
  • [16] S. Kallio, J. Karttunen, P. Peltoniemi, P. Silventoinen and O. Pyrhönen: Determination of the inductance parameters for the decoupled d-q model of double-star permanent-magnet synchronous machines. IET Electric Power Application, 8, (2014), 39-49. DOI: 10.1049/iet-epa.2013.0195.
  • [17] I. Zoric, M. Jones and E. Levi: Arbitrary power sharing among three-phase winding sets of multiphase machines. IEEE Transactions Industrial Electronics, 65(2), (2018), 1128-1139. DOI: 10.1109/TIE.2017.2733468.
  • [18] Y. Hu, Z.Q. Zhu and M. Odavic: Comparison of two-individual current control and vector space decomposition control for dual three-phase PMSM. IEEE Transactions Industry Applications, 53(5), (2017), 4483-4492. DOI: 10.1109/TIA.2017.2703682.
  • [19] S.A.KH. Mozaffari Niapour, GH. Shokri Garjan, M. Shafiei, M.R. Feyzi, S. Danyali and M. Bahrami Kouhshahi: Review of permanent-magnet brushless DC motor basic drives based on analysis and simulation study. International Review of Electrical Engineering (I.R.E.E.), 9, (2014), 930-957. DOI: 10.15866/iree.v9i5.827.
  • [20] M. Ruiqing, L. Weiguo, L. Guangzhao and H. Yashan: The balanced current control of dual-redundancy permanent magnetic brushless DC motor. 2005 International Conference on Electrical Machines and Systems, Nanjing, China, (2005), 475-479. DOI: 10.1109/ICEMS.2005.202573.
  • [21] Z. Luo, D. Liang and W. Ding: Dynamic modeling and characteristics analysis for dual-redundancy PM brushless DC servo system. 2011 International Conference on Electrical Machines and Systems, Beijing, China, (2011). DOI: 10.1109/ICEMS.2011.6073881.
  • [22] Z. Fu, J. Liu and Z. Xing: Performance analysis of dual-redundancy brushless DC motor. Energy Reports, 6, (2020), 829-833. DOI: 10.1016/j.egyr.2020.11.125.
  • [23] H. Yan, Y. Xu, J. Zou, B. Wang and S. Jiang: A maximum current sharing method for dual-redundancy brushless DC Motor control. 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, (2014), 1057-1061. DOI: 10.1109/ICEMS.2014.7013634.
  • [24] C. Bian, X. Li and G. Zhao: The peak current control of permanent magnet brushless DC machine with asymmetric dual-three phases. CES Transactions Electrical Machines and Systems, 2, (2018), 29-135. DOI: 10.23919/TEMS.2018.8326459.
  • [25] I. Shchur and D. Jancarczyk: Electromagnetic torque ripple in multiple three-phase brushless DC motors for electric vehicles. Electronics, 10(24): 3097, (2021). DOI: 10.3390/electronics10243097.
  • [26] P. Bogusz, M. Korkosz and J. Prokop: A study of dual-channel brushless DC motor with permanent magnets. 2016 13th Selected Issues of Electrical Engineering and Electronics (WZEE), Rzeszow, Poland, (2016). DOI: 10.1109/WZEE.2016.7800189.
  • [27] O. Makarchuk, B. Kharchyshyn and L. Kasha: Analysis of the magneto-mechanical characteristic of double three-phase PMSM. 2021 IEEE 3d Ukraine Conference on Electrical and Computer Engineering (UKR-CON), Lviv, Ukraine, (2021), 333-338. DOI: 10.1109/UKRCON53503.2021.9575684.
  • [28] M. Lis and O. Makarchuk: Model matematyczny układu nadprądowego z silnikiem PMSM zasilanym ze źródła napięcia sinusoidalnego. Przegląd Elektrotechniczny, 12, (2013), 211-214.
  • [29] O. Makarchuk: Methods and Principles of Creating of High-Speed Brushless Electric Machines with Permanent Magnets. Dr Sci. Thesis, Lviv Polytechnic National University, Lviv, Ukraine, (2017), 394 p.
  • [30] M. Gołębiowski, A. Smoleń, L. Gołębiowski and D. Mazur: Functional simulation model of the axial flux permanent magnet generator. Archives of Electrical Engineering, 67(4), (2018), 857-868. DOI: 10.24425/aee.2018.124745.
  • [31] L. Gołębiowski, M. Gołębiowski and B. Kwiatkowski: Optimal control of a doubly fed induction generator of a wind turbine in island grid operation. Energies, 14(23), 7883, (2021). DOI: 10.3390/en14237883.
  • [32] G. Sieklucki, A. Bisztyga, R. Sykulski, A. Zdrojewski and T. Orzechowski: Discrete-time switching state-space controller of DC drive. Archives of Control Sciences, 23(3), (2013), 333-349. DOI: 10.2478/acsc-2013-0020.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-374d2f18-e6cb-4d30-99e6-c473d457c397
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.