PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MoS2/WS2/FineLPN Composite Layers – a New Approach to Low Frictional Coatings for Piston Rings

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Warstwy kompozytowe MoS2/WS2/FineLPN – nowe podejście do powłok o niskim tarciu na pierścienie tłokowe
Języki publikacji
EN
Abstrakty
EN
In the search for alternative processes of technologically difficult and environmentally dangerous galvanic chromium coatings on cast iron piston rings, composite coatings of low-friction nanoparticles MoS2, WS2and/or rGO embedded in a hard matrix of iron nitrides have been investigated. Laboratory tribological and operational tests on a real aircraft engine have been carried out to select the optimal technological parameters and microstructures of low frictional layers. A dry friction coefficient of 0.13 has been obtained for the best of the processes, i.e., four times lower than for raw reference samples (0.55). According to that technological option, the low-friction layers were produced for a set of rings for three cylinders of a Boxer aircraft engine and tested comparatively in an operational test with the rings in the other three cylinders. The experimental engine has passed the operational test obtaining the assumed power performance, fuel consumption and admission criteria of exhaust purity and oil purity.
PL
W poszukiwaniu alternatywnych procesów dla trudnych technologicznie i niebezpiecznych dla środowiska galwanicznych powłok chromowych na żeliwnych pierścieniach tłokowych badano powłoki kompozytowe z niskotarciowych nanocząstek MoS2, WS2 i/lub rGO osadzonych w twardej osnowie z azotków żelaza. Przeprowadzono laboratoryjne badania tribologiczne oraz próby eksploatacyjne na rzeczywistym silniku lotniczym w celu doboru optymalnych parametrów technologicznych i mikrostruktur warstw o niskim współczynniku tarcia. Dla najlepszego z procesów uzyskano współczynnik tarcia suchego na poziomie 0,13, czyli czterokrotnie niższy niż dla surowych próbek referencyjnych (0,55). Zgodnie z tą opcją technologiczną wytworzono warstwy o niskim współczynniku tarcia dla zespołu pierścieni do trzech cylindrów silnika lotniczego Boxer i przetestowano je porównawczo w próbie eksploatacyjnej z pierścieniami chromowanymi w pozostałych trzech cylindrach, uzyskując założone parametry mocy, zużycie paliwa oraz kryteria dopuszczenia czystości spalin i oleju.
Czasopismo
Rocznik
Tom
Strony
49--58
Opis fizyczny
Bibliogr. 34 poz., rys., wykr., wz.
Twórcy
autor
  • Hart-Tech Ltd., 45 Niciarniana Street, 92-320 Lodz, Poland 2 Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowski Street, 90-924 Lodz, Poland.
  • Hart-Tech Ltd., 45 Niciarniana Street, 92-320 Lodz, Poland 2 Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowski Street, 90-924 Lodz, Poland.
  • Hart-Tech Ltd., 45 Niciarniana Street, 92-320 Lodz, Poland 2 Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowski Street, 90-924 Lodz, Poland.
  • F.P.T. PRIMA SA, 17 Lisciasta Street, 91-357 Lodz, Poland
Bibliografia
  • 1. Williams J.: Boundary lubrication and friction. In: Engineering Tribology. Cambridge University Press, Cambridge. 2005, p. 348–380, doi.org/10.1017/CBO9780511805905.
  • 2. Neville A., Morina T., Haque M., Voong M.: Compatibility between tribological surfaces and lubricant additives – How friction and wear reduction can be controlled by surface/lubes synergies. Tribology International 2007, vol. 40, no. 10/12, pp. 1680–1695, doi.org/10.1016/j.triboint.2007.01.019.
  • 3. Ostapski W.: Analysis of thermo-mechanical response in an aircraft piston engine by analytical, FEM, and test-stand investigations. Journal of Thermal Stresses 2011, vol. 34, no. 3, pp. 285–312, doi.org/10.1080/01495739.2010.544166.
  • 4. Sherrington I., Smith E.H.: Experimental methods for measuring the oil-film thickness between the piston rings and cylinder wall of internal combustion engines. Tribology International 1985, vol. 18, no. 6, pp. 315–320, doi.org/10.1016/0301-679X(85)90077-5.
  • 5. Ali M.K.A., Xianjun H., Mai L., Qingping C., Turkson R.F., Bichengc C.: Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribology International 2016, vol. 103, pp. 540–554, doi.org/10.1016/j.triboint.2016.08.011.
  • 6. Yamagata H.: The science and technology of materials in automotive engines. Woodhead Publishing Limited, Cambridge 2005.
  • 7. Yongjian L., Shiyun D., Peng H., Shixing Y., Enzhong L., Xiaoting L., Binshi X.: Microstructure characteristics and mechanical properties of new-type FeNiCr laser cladding alloy coating on nodular cast iron. Journal of Materials Processing Technology 2019, vol. 269, pp. 163–171, doi.org/10.1016/j.jmatprotec.2019.02.010.
  • 8. Writzl V., Rovani A.C., Pintaude G., Lima M.S.F., Guesser W.L., Borges P.C.: Scratch resistances of compacted graphite iron with plasma nitriding, laser hardening, and duplex surface treatments. Tribology International 2020, vol. 143, p. 106081, doi.org/10.1016/j.triboint.2019.106081.
  • 9. Kula P., Dybowski K., Lipa S., Batory D., Sawicki J., Wołowiec E., Klimek L.: Hybrid surface layers, made by nitriding with DLC coating, for application in machine parts regeneration. Archives of Materials Science and Engineering 2013, vol. 60, no. 1, pp. 32–37.
  • 10. Bindumadhavan P.N., Makesh S., Gowrishnkar N., Waha H.K., Prabhakaraet O.: Aluminizing and subsequent nitriding of plain carbon low alloy steels for piston ring applications. Surface and Coatings Technology 2020, vol. 127, no. 2–3, pp. 251–258, doi.org/10.1016/S0257-8972(00)00565-X.
  • 11. Zabala B., Igartua A., Fernández X., Priestner C., Ofner H., Knaus O., Abramczuk M., Tribotte P., Girot F., Roman E., Nevshupa R.: Friction and wear of a piston ring/cylinder liner at the top dead centre: Experimental study and modeling. Tribology International 2017, vol. 106, pp. 23–33, doi.org/10.1016/j.triboint.2016.10.005.
  • 12. Lin J., Wei R., Bitsis D.C., Lee P.M.: Development and evaluation of low friction TiSiCN nanocomposite coatings for piston ring applications. Surface and Coatings Technology 2016, vol. 298, pp. 121–131, doi.org/10.1016/j.surfcoat.2016.04.061.
  • 13. Babu M.V., Kumar R.K., Prabhakar O., Shankar N.G.: Simultaneous optimization of flame spraying process parameters for high quality molybdenum coatings using Taguchi methods. Surface and Coatings Technology 1996, vol. 79, pp. 276–288, doi.org/10.1016/0257-8972(95)02453-0.
  • 14. Arps J.H., Page R.A., Dearnaley G.: Reduction of wear in critical engine components using ion-beamassisted deposition and ion implantation. Surface and Coatings Technology 1996, vol. 84, pp. 579–583, doi.org/10.1016/S0257-8972(95)02815-3.
  • 15. Kula P.: The comparison of resistance to "hydrogen wear" of hardened surface layers. Wear 1994, vol. 178, pp. 117–121, doi.org/10.1016/0043-1648(94)90136-8.
  • 16. Dahm K.L., Dearnley P.A.: Novel plasma-based coatings for piston rings. Tribology Series 2002, vol. 40, pp. 243–246, doi.org/10.1016/S0167-8922(02)80027-X.
  • 17. Friedrich C., Berg G., Broszeit E., Rick F., Holland J.: PVD CrxN coatings for tribological application on piston rings. Surface and Coatings Technology 1997, vol. 97, pp. 661–668.
  • 18. Prado F.E., Hilal M., Chocobar-Ponce S.: Chapter 6 – Chromium and the Plant: A Dangerous Affair? Plant Metal Interaction, Elsevier 2016, pp. 149–177.
  • 19. Kapłan M., Klimek K., Maj G., Zhuravel D., Bondar A., Lemeshchenko-Lagoda V., Boltianskyi B., Boltianska L., Syrotyuk H., Syrotyuk S., Konieczny R., Filipczak G., Anders D., Dybek B., Wałowski G.: Method of Evaluation of Materials Wear of Cylinder-Piston Group of Diesel Engines in the Biodiesel Fuel Environment. Energies 2022, vol. 15, no. 9, p. 3416, doi.org/10.3390/en15093416.
  • 20. Salinas Ruiz V.R., Kuwahara T., Galipaud J., Masenelli-Varlot K., Hassine M.B., Héau C., Stoll M., Mayrhofer L., Moras G., Martin J.M., Moseler M., Barros-Bouchet M.I.: Interplay of mechanics and chemistry governs wear of diamond-like carbon coatings interacting with ZDDP-additivated lubricants. Nature Communications 2021, vol. 12, p. 4550, doi.org/10.1038/s41467-021-24766-6.
  • 21. Sawicki J., Gorecki M., Kaczmarek L., Gawronski Z., Dybowski K.: Increasing the durability of
  • pressure dies by modern surface treatment methods. Chiang Mai Journal of Science 2013, vol. 40, no. 5, pp. 886–897.
  • 22. Kindrachuk M., Volchenko D., Balitskii A., Abramek K.F., Volchenko M., Balitskii O., Skrypnyk V., Zhuravlev D., Yurchuk A., Kolesnikov V.: Wear Resistance of Spark Ignition Engine Piston Rings in Hydrogen-Containing Environments. Energies 2021, vol. 14, n0. 16, p. 4801, doi.org/10.3390/en14164801.
  • 23. Dayanç A., Karaca B., Kumruoğlu L.C.: Plasma Nitriding Process of Cast Camshaft to Improve Wear Resistance. Acta Physica Polonica A 2019, vol. 135, no. 4, pp. 793–799, doi:10.12693/APhysPolA.135.793.
  • 24. Ampaw E.K., Arthur E.K., Badmos A.Y., Obayemi J.D., Adewoye O.O., Adetunji A.R., Olusunle S.O.O., Soboyejo W.O.: Sliding Wear Characteristics of Pack Cyanided Ductile Iron. Journal of Materials Engineering and Performance 2019, vol. 28, no. 12, pp. 7227–7240, doi.org/10.1007/s11665-019-04471-8.
  • 25. Wołowiec-Korecka E., Kula P., Pawęta S., Pietrasik R., Sawicki J., Rzepkowski A.: Neural computing for a low-frictional coatings manufacturing of aircraft engines' piston rings. Neural Computing and Applications 2019, vol. 31, pp. 4891–4901, doi.org/10.1007/s00521-018-03987-9.
  • 26. Watanabe S., Noshiro J., Miyake S.: Tribological characteristics of WS2/MoS2 solid lubricating multilayer films. Surface and Coatings Technology 2004, vol. 183, no. 2–3, pp. 347–351, doi.org/10.1016/j.surfcoat.2003.09.063.
  • 27. Wong K.C., Lub X., Cotter J., Eadie D.T., Wong P.C., Mitchell K.A.R.: Surface and friction characterization of MoS2 and WS2 third body thin films under simulated wheel/rail rolling–sliding contact. Wear 2008, vol. 264, no. 7–8, pp. 526–34, doi.org/10.1016/j.wear.2007.04.004.
  • 28. Sawicki J., Siedlaczek P., Staszczyk A.: Finite-element analysis of residual stresses generated under nitriding process: a three-dimensional model. Metal Science and Heat Treatment 2018, vol. 59, no. 11–12, pp. 799–804, doi.org/10.1007/s11041-018-0229-y.
  • 29. Sawicki J., Siedlaczek P., Staszczyk A.: Fatigue life predicting for nitrided steel – finite element analysis. Archives of Metallurgy and Materials 2018, vol. 63, no. 2, pp. 917–923, doi:10.24425/122423.
  • 30. Has Z., Kula P., Gawronski Z.: Structural construction of sulfonitrided layers in stainless and heatresisting steels. Archives of Materials Science 1980, vol. 1, no. 4, pp. 137–150 (in Polish).
  • 31. Lesz S., Kalinowska-Ozgowicz E., Golombek K., Kleczka M.: Structure and properties of surface layers of selected constructional steels after sulfonitriding. Archives of Materials Science and Engineering 2010, vol. 42, no. 1, pp. 21–28.
  • 32. Kula P., Pietrasik R., Paweta S.: Low-friction layer from nanocomposite gradient material and method for producing it. Patent Office of the Republic of Poland. Patent No. PL 412975. 2019.
  • 33. Kula P., Pietrasik R., Pawęta S., Rzepkowski A.: Low Frictional MoS2/WS2/FineLPN Hybrid Layers on Nodular Iron. Coatings, vol. 10, no. 3, p. 293, doi.org/10.3390/coatings10030293. 2020.
  • 34. Bowden F.P., Tabor D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford 1964, Part 1, pp. 110–121, Part 2, pp. 158–185.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3749470e-2f62-4a24-80b6-ba42d285985d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.