PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Improving Image Sharpness by Surface Recognition

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article proposes a rule for improving image sharpness and analyzes its implementation by means of the cellular automata formalism and neural networks. It has been proved, that the previously known contrasting algorithm, which uses a template and 3x3 pixels, can be improved considerably by repeatedly applying the iterative process over templates 2x2 with the rule "anti - blur" ( C 11 = C 11 x F - ( C 12 + C 21 + C 22) x S ) and gradient color correction at each step after the "anti - blur". Colors of images in the template are presented as real numbers (R, G, B). To correct the gradient (C11 < C12, C11 < C21, C11
Twórcy
autor
  • Automated Control System Lviv Polytechnic National University S. Bandery 28a, 79008 Lviv, Ukraine; Lviv, Ukraine
Bibliografia
  • 1. Deep Learning Tutorial. The National Conference on Communications, 2017, http://www.ee.iitm.ac.in/ncc2017/tutorials/NCC_DL_Tutorial.pdf
  • 2. Kunihiko Fukushima. 1980. Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biol. Cybernetics 36, 193 202: 193-202.
  • 3. https://en.wikipedia.org/wiki/Data.
  • 4. https://web.itu.edu.tr/hulyayalcin/Signal_Processing_Books/2010_Szeliski_ComputerVision.pdf
  • 5. Zerbino D., Farid T. 1999. Realization of Complex Arithmetic on Cellular Automata”. Parallel Computing Technologies, Lecture Notes in Computer Science, Springier, 1999, vol.1662: 479-480.
  • 6. Zerbino D. D., Tereshkiv S. M. 2017. The Connection Between Prime Numbers”, In: Computer Science and Information Techologies CSIT 2017, 05-08 September, 2017, Lviv, Ukraine: 438-441
  • 7. Brytik V., Grebinnik O., Kobziev V. 2016. RESEARCH THE POSSIBILITIES OF DIFFERENT FILTERS AND THEIR APPLICATION TO IMAGE RECOGNITION PROBLEMS. Econtechmod. Vol 5, no 4: 21-27.
  • 8. Veres O., Kis Ya., Kugivchak V., Rishniak I. 2018. Development of a Reverse-search System of Similar or Identical Images. Econtechmod. Vol 7, no 2: 23-30.
  • 9. Shumeiko A., Smorodskyi V. 2017. Discrete trigonometric transform and its usage in digital image processing. Econtechmod. Vol 6, no 4: 21-26.
  • 10. Rybchak Z., Basystiuk O. 2017. Analysis of computer vision and image analysis technics. Econtechmod. Vol 6, no 2: 79-84.
  • 11. Sajad Sabzi, Yousef Abbaspour-Gilandeh, Ginés García-Mateos, 2018. A new approach for visual identification of orange varieties using neural networks and metaheuristic algorithms. In: Information Processing in Agriculture, Volume 5, Issue 1: 162-172.
  • 12. Lessmann, M. 2015. Learning of invariant object recognition in hierarchical neural networks using temporal continuity. In: ELCVIA Electronic Letters On Computer Vision And Image Analysis, 14(3), 16-18.
  • 13. Romanuke, V. V. 2016. Optimal Pixel-to-Shift Standard Deviation Ratio for Training 2-Layer Perceptron on Shifted 60 × 80 Images with Pixel Distortion in Classifying Shifting-Distorted Objects. Applied Computer Systems, 19(1), 61-70.
  • 14. Ryan N. Rakvic, Hau Ngo, Randy P. Broussard, Robert W. Ives. 2010. Comparing an FPGA to a Cell for an Image Processing Application. EURASIP Journal on Advances in Signal Processing.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37477bd3-c190-4442-9520-0fd28b862646
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.