PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Characterization of Landfill Leachate and their Toxic Effects on Germination and Seedling Growth of Various Plant Species – A Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Leachate generated from landfills contains many toxic contaminants, such as dissolved organics, inorganic salts, ammonia, and heavy metals, which impact the surrounding environmental systems. This study characterized the AL-Mufarrihat Sanitary Landfill (MSL) leachate in Al-Medinah Al-Munawwarh (MM) province, Saudi Arabia, by analyzing important physicochemical parameters. Phytotoxicity was assessed using various higher plant bioassays, namely, cucumber (Cucumis sativus L.), tomato (Lycopersicum esculentum L.), cabbage (Brassica oleracea var. capitata L.), and corn (Zea mays L.). The effective concentration of seed germination represented by EC50 was calculated using a USEPA computer program based on Finney’s Probit analysis method. Selected phytotoxicity test endpoint parameters, namely relative seed germination (RSG), relative root elongation (RRE), and germination index (GI) were determined. The tested leachate exhibited low concentrations of heavy metals, whereas high levels of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) were recorded. The mean EC 50 values for MSL leachate exposed to B. oleracea, L. esculentum, C. sativus, and Z. mays were 2.66%, 3.12%, 4.27%, and 5.22%, respectively. These values indicate that B. oleracea was the most sensitive bioassay, whereas Z. mays was the least sensitive. All tested bioassays showed severe phytotoxic responses to the exposed higher leachate concentrations, represented by complete inhibition for RSG, RRE, and GI. Lower leachate concentrations exhibited stimulatory effects on RSG, whereas RRE and GI were hindered, even at these lower concentrations. The results revealed that although RSG and RRE were effective and promising parameters in phytotoxicity evaluation, GI was the most responsive parameter for phytotoxicity assessment. The high levels of organic and inorganic compounds in the leachate are likely the primary cause of the phytotoxicity observed in the bioassays. The results of this study highlight the pollution potential of landfill leachate in Saudi Arabia and will furnish supplementary reference information for hazard assessment and future leachate management.
Rocznik
Strony
335--353
Opis fizyczny
Bibliogr. 101 poz., rys., tab.
Twórcy
  • Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, Al-Salt, Jordan
  • Department of Biology, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia
  • Department of Biology, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia
  • Directorate of Water and Soil Research, National Agricultural Research Center (NARC), Baq’a 19381, Jordan
  • Department of Biology, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia
  • Department of Biology, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia
autor
  • Department of Biology, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia
  • Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, Al-Salt, Jordan
Bibliografia
  • 1. Abdel-Shafy, H.I., Ibrahim, A.M., Al-Sulaiman, A.M., Okasha, R.A. 2024. Landfill leachate: sources, nature, organic composition, and treatment: An environmental overview. Ain Shams Engineering Journal, 15, 1–10.
  • 2. Abunama, T., Moodley, T., Abualqumboz, M., Kumari, S., Bux, F. 2021. Variability of leachate quality and polluting potentials in light of leachate pollution index (LPI) – A global perspective. Chemosphere, 282, 131119.
  • 3. Abunama, T., Othman, F. 2021. Comparison of landfill leachate generation and pollution potentials in humid and semi-arid climates. Int. J. Environment and Waste Management, 27, 79–92.
  • 4. Alkassasbeh, J.Y.M., Heng, L.Y., Surif, S. 2009. Toxicity testing and the effect of landfill leachate in Malaysia on behavior of common carp (Cyprinus carpio L., 1758; Pisces, Cyprinidae). American Journal of Environmental Sciences, 5, 209–217.
  • 5. Alkhudhiri, A., Darwish, N.B., Hilal, N. 2019. Analytical and forecasting study for wastewater treatment and water resources in Saudi Arabia. Journal of Water Process Engineering, 32, 100915.
  • 6. Aluko, O.O., Sridhar, M.K.C., Oluwande, P.A. 2003. Characterization of leachates from a municipal solid waste landfill site in Ibadan, Nigeria. Journal of Environmental Health Research, 2, 32–37.
  • 7. Al-Wabel, M.I., Al Yehya, W.S., Al-Farraj, A.S., El-Maghraby, S.E. 2011. Characteristics of landfill leachates and bio-solids of municipal solid waste (MSW) in Riyadh City, Saudi Arabia. J. Saudi Soc. Agric. Sci., 10, 65–70.
  • 8. Al-Yaqout, A.F., Hamoda, M.F. 2003. Evaluation of landfill leachate in arid climate-a case study. Environment International, 29, 593–600.
  • 9. Anand, N., Palani, S.G. 2022. A comprehensive investigation of toxicity and pollution potential of municipal solid waste landfill leachate. Science of the Total Environment, 838, 1–12.
  • 10. APHA, 2012. Standard methods for the examination of water and wastewater. 22nd edition, American Public Health Association, Washington, DC.
  • 11. Arliyani, I, Tangahu, B.V., Mangkoedihardjo, S., Zulaika, E., Kurniawan, S.B. 2023. Enhanced leachate phytodetoxification test combined with plants and rhizobacteria bioaugmentation. Heliyon, 9, 1–17.
  • 12. Arunbabu, V., Indu, K.S., Ramasamy, E.V. 2017. Leachate pollution index as an effective tool in determining the phytotoxicity of municipal solid waste leachate. Waste Manag., 68, 329–336.
  • 13. Assmuth, T., Penttilla, S. 1995. Characteristics, determinants, and interpretations of acute lethality in daphnids exposed to complex waste leachates. Aquatic Toxicology, 31, 125–141.
  • 14. Aziz, H.A., Yusoff, M.S., Adlan, M.N., Adnan, N.H., Alias, S. 2004. Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter. Waste Management, 24, 353–358.
  • 15. Barlaz, M.A., Rooker, A.P., Kjeldsen, P., Gabr, M.A., Bordent, R.C. 2002. Critical evaluation of factors required to terminate the postclosure monitoring period at solid waste landfills. Environ. Sci. Technol., 36, 3457–3464.
  • 16. Baun, A., Kloft, L., Bjerg, P.L., Nyhol, N. 1999. Toxicity testing of organic chemicals in groundwater polluted with landfill leachate. Environmental Toxicology and Chemistry, 18, 2046–2053.
  • 17. Bellouk, H., Danouche, M., El Mrabet, I., Tanji, K., Khalil, F., Nawdali, M., El Ghachtouli, N., Zaitan, H. 2023. Remediation of the landfill leachate of Fez city (Morocco) by sono-photo-Fenton process: Cost and phytotoxicity assessment. Journal of Water Process Engineering, 56, 1-14.
  • 18. Bialowiec, A. 2015. Transpiration as landfill leachate phytotoxicity indicator. Waste Management, 39, 189–196.
  • 19. Bloor, M.C., Banks, C.J., Krivtsov, V. 2006. Population dynamics in Asellus aquaticus as modified by chronic leachate stress. Engineering Geology, 85, 9–13.
  • 20. Budi, S., Suliasih, B.A., Othman, M.S., Heng, L.Y. & Surif, S. Toxicity identification evaluation of landfill leachate using fish, prawn and seed plant. Waste Management, 55, 231–237.
  • 21. Byrne, M., Oakes, D.J., Pollak, J.K., Laginestra, E. 2008. Toxicity of landfill leachate to sea urchin development with a focus on ammonia. Cell Biol. Toxicol., 24, 503–512.
  • 22. Cheng, C.Y., Chu, L.M. 2007. Phytotoxicity data safeguard the performance of the recipient plants in leachate irrigation. Environmental Pollution, 145, 195–202.
  • 23. Cheung, K.C., Chu, L.M., Wong, M.H. 1993. Toxic effect of landfill leachate on microalgae. Water, Air and Soil Pollution, 69, 337–349.
  • 24. Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., Christensen, J.B., Baun, A., Albrechtsen, H.-J., Heron, G. 2001. Biogeochemistry of landfill leachate plumes. Appl. Geochem., 16, 659-718.
  • 25. Chu, L.M., Cheung, K.C., Wong, M.H. 1994. Variations in the chemical properties of landfill leachate. Environmental Management, 18, 105–117.
  • 26. Chung, M.K., Hu, R., Wong, M.H., Cheung, K.C. 2007. Comparative toxicity of hydrophobic contaminants to microalgae and higher plants. Ecotoxicology, 16, 393–402.
  • 27. Clement, B., Colin, J.R., Anne, L.D.D. 1997. Estimation of the hazard of landfills through toxicity testing of leachates. Comparison of physico-chemical characteristics of landfill leachates with their toxicity determined with a battery of tests. Chemosphere, 35, 2783–2796.
  • 28. Clement, B., Guido, P., Colin, J., Anne, L.D.D. 1996. Estimation of the hazard of landfills through toxicity testing of leachates. Determination of leachate toxicity with a battery of acute tests. Chemosphere, 33, 2303–2320.
  • 29. Cutillo, F., Abrosca, B.D., Greca, M.D., Marino, C.D., Golino, A., Previtera, L., Zarrelli, A. 2003. Cinnamic acid amides from chenopodium album: effects on seeds germination and plant growth. Phytochemistry, 64, 1381–1387.
  • 30. El-Fadel, M., Bou-zeid, E., Chahine, W. 2003. Landfill evolution and treatability assessment of high-strength leachate from MSW with high organic and moisture content. Intern. J. Environ. Studies, 60, 603–615.
  • 31. El-Fadel, M., Bou-Zeid, E., Chahine, W., Alayli, B. 2002. Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Management, 22, 269–282.
  • 32. Fan, H.J., Shu, H.Y., Yang, H.S., Chen, W.C. 2006. Characteristics of landfill leachates in central Taiwan. Science of the Total Environment, 361, 25–37.
  • 33. Fatta, D., Papadopoulos, A., Loizidou, M. 1999. A study on the landfill leachate and its impact on the groundwater quality of the greater area. Environmental Geochemistry and Health, 21, 175–190.
  • 34. Finney, D.J. 1971. Probit Analysis. Cambridge University Press, London, UK.
  • 35. Franco, H.A., Marques, M.R. da C., Martins, G.M. de O., Mussel, Y.L., Filho, S.T. 2017a. Ecotoxicological evaluation of the application of landfill leachate on the germination of cabbage (Brassica oleracea var. capitata). REGET, 21, 45–57.
  • 36. Franco, H.A., Silva, M.E.R.V. da, Silveira, M.F. da, Marques, M.R. da C., Filho, S.T. 2017b. Impact of landfill leachate on the germination of Cucumber (Cucumis sativus). REGET, 21, 32–44.
  • 37. Frikha, Y., Fellner, J., Zairi, M. 2017. Leachate generation from landfill in a semi-arid climate: A qualitative and quantitative study from Sousse, Tunisia. Waste Management & Research, 1–9.
  • 38. Ghosh, P., Thakur, I.S., Kaushik, A., 2017. Bioassays for toxicological risk assessment of landfill leachate: a review. Ecotoxicol. Environ. Saf., 141, 259–270.
  • 39. Grilla, E., Parthenidis, P., Filiou, A., Isari, E., Gkouvousis, P., Kokkinos, P., Papaioannou, D., Evgenidou, E., Lambropoulou, D.A., Kalavrouziotis, I.K. 2024. Phytotoxicity and ecotoxicity assessment of landfill leachate treated by UV-Fenton: From lab to pilot scale. Sustainable Chemistry and Pharmacy, 38, 101483.
  • 40. Gupta, A., Rajamani, P. 2015. Toxicity assessment of municipal solid waste landfill leachate collected in different seasons from okhala landfill site of Delhi. J. Biomedical Science and Engineering, 8, 357–369.
  • 41. Gupta, A., Paulraj, R., 2014. Relationship between physicochemical parameters and toxicity of leachate from Municipal Solid waste landfill site in Delhi. In: N.J.Raju (Ed.), Capital Publishing Company. Approaches for the Characterization of Natural Resources in the Environment: Challenges, Processes and Strategies, 209–213.
  • 42. Hashemi, H., Salehi, N., Rajabi, S., Isinkaralar, A. 2023. Evaluation of acute phytotoxicity of raw leachate and landfill leachate using Sorghum bicolor seeds. Environmental Health Engineering and Management Journal, 10, 441–449.
  • 43. Hoss, L. Zanatta, R. Quadro, M., Correa, E.K., Andreazza, R. 2022. Evaluation of the phytotoxicity of landfill leachate treated with a rotating biological reactor. Eng. Sanit. Ambient., 27, 47–53.
  • 44. Hussein, M., Yoneda, K., Mohd-Zaki, Z., Amir, A., Othman, N.Z. 2021. Heavy metals in leachate, impacted soils and natural soils of different landfills in Malaysia: An alarming threat. Chemosphere, 267, 128874.
  • 45. Kalousek, P., Schreiber, P., Vyhnnek, T., Trojan, V., Adamcov, D., Vaverkov, M.D. 2020. Effect of landfill leachate on the growth parameters in two selected varieties of fiber hemp. International Journal of Environmental Research, 14, 155–163.
  • 46. Kapanen, A., Itavaara, M. 2001. Ecotoxicity tests for compost applications. Ecotoxicology and Environmental Safety, 49, 1–16.
  • 47. Keeling, A.A., Paton, I.K., Mullett, J.A.J. 1994. Germination and growth of plants in media containing unstable refuse-derived compost. Soil Biol. Biochem., 26, 161–112.
  • 48. Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., Christensen, T.H. 2002. Present and longterm composition of M.S.W. landfill leachate. Crit. Rev. Environ. Sci. and Technol., 32, 297–336.
  • 49. Kjeldsen, P., Christophersen, M. 2001. Composition of leachate from old landfills in Denmark. Waste Manage Res., 19, 249–256.
  • 50. Khattabi, H., Aleya, L., Mania, J. 2002. Changes in the quality of landfill leachates from recent and aged municipal solid waste. Waste Manage. Res., 20, 357–364.
  • 51. Lee, J.Y., Cheon, J.Y., Kwon, H.P., Yoon, H.S., Lee, S.S., Kim, J.H., Park, J.K., Kim, C.G. 2006. Attenuation of landfill leachate at two uncontrolled landfills. Environ. Geol., 51, 581–593.
  • 52. Lindamulla, L., Nanayakkara, N., Othman, M., Jinadasa, S., Herath, G., Jegatheesan, V. 2022. Municipal solid waste landfill leachate characteristics and their treatment options in tropical countries current pollution reports. Water Pollution, 8, 273–287.
  • 53. Li, G., Chen, J., Yan, W., Sang, N. 2017. A comparison of the toxicity of landfill leachate exposure at the seed soaking and germination stages on Zea mays L. (maize). Journal of Environmental Sciences, 55, 206–213.
  • 54. Li, G., Yun, Y., Li, H., Sang, N. 2008. Effect of landfill leachate on cell cycle, micronucleus, and sister chromatid exchange in Triticum aestivum. Journal of Hazardous Materials, 155, 10–16.
  • 55. Lo, I.M.C., 1996. Characteristics and treatment of leachate from domestic landfills. Environment International, 22, 433–442.
  • 56. Mallick, J. 2021. Municipal Solid Waste Landfill Site Selection Based on Fuzzy-AHP and Geoinformation Techniques in Asir Region Saudi Arabia. Sustainability, 13, 1538.
  • 57. Marttinen, S.K., Kettunen, R.H., Sormunen, K.M., Soimasuo, R.M., Rintala, J.A. 2002. Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere, 46, 851–858.
  • 58. MEWA, 2020. Ministry of Environment, Water and Agriculture. Executive Regulations for the Protection of Aqueous Media from Pollution. Environmental Law Issued by the Royal Decree No. (m/165), dated 10/07/2020.
  • 59. Mor, S., Kaur, K., Khaiwal, R. 2013. Growth behavior studies of bread wheat plant exposed to municipal landfill leachate. J. Environ. Biol., 34, 1083–1087.
  • 60. Mor, S., Ravindra, K., Dahiyaa, R.P., Chandra, A. 2006. Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ. Monit. Assess., 118, 435–456.
  • 61. Muna, L., Guido, P., Colin, J., Wim, D.C., Karl, S. 1995. Toxicity evaluations of wastewaters in Austria with conventional and cost-effective bioassays. Ecotoxicology and Environmental Safety, 32, 139–146.
  • 62. Naveen, B.P, Mahapatra, D.M., Sitharam, T.G., Sivapullaiah, P.V., Ramachandra, T.V. 2017. Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220, 1–12.
  • 63. Oman, C.B., Junestedt, C. 2008. Chemical characterization of landfill leachates – 400 parameters and compounds. Waste Management, 28, 1876–1891.
  • 64. Orescanin, V., Ruk, D., Kollar, R., Mikelic, I.L., Nad, K., Mikulic, N. 2011. A combined treatment of landfill leachate using calcium oxide, ferric chloride and clinoptilolite. Journal of Environmental Science and Health, Part A. 46, 323–328.
  • 65. Ouda, O.K.M., Cekirge, H.M. 2013. Roadmap for development of waste to energy facility in Saudi Arabia. American Journal of Environmental Engineering, 3, 256–272.
  • 66. Pablos, M., Maritini, F., Fernandez, C., Babin, M.M., Herraez, I., Miranda, J., Martinez, J., San-Segundo, L., Carbonell, G., Garcia-Hortiguela, P., Tarazona, J.V. 2011. Correlation between physicochemical and ecotoxicological approaches to estimate landfill leachates toxicity. Waste Management, 31, 1841–1847.
  • 67. Palm, E.R., Nissim, W.G, Adamcov, D., Podlasek, A., Jakimiuk, A., Vaverkov, M.D. 2022. Sinapis alba L. and Triticum aestivum L. as biotest model species for evaluating municipal solid waste leachate toxicity Journal of Environmental Management, 302, 114012.
  • 68. Pivato, A., Gaspari, L. 2006. Acute toxicity test of leachates from traditional and sustainable landfills using luminescent bacteria. Waste Management, 26, 1148–1155.
  • 69. Pohland, F.G., Harper, S.R. 1985. Critical review and summary of leachate and gas production from landfills. EPA/600/2-86/073. United States Environmental Protection Agency.
  • 70. Quraishi, T.Z.A., Kenekar, A.A., Fale, C.A., Ranadive, P.V., Kamath, G.R. 2019. Amelioration of physico-chemical parameters and phytotoxicity of landfill leachate by microbial degradation. Indian Journal of Science and Technology, 12, 1–12.
  • 71. Radwan, N., Khan, N.A., Elmanfaloty, R.A.G. 2021. Optimization of solid waste collection using RSM approach, and strategies delivering sustainable development goals (SDG’s) in Jeddah, Saudi Arabia. Scientific Reports, 11, 16612.
  • 72. Ramana, S., Biswas, A.K., Kundu, S., Saha, J.K., Yadava, R.B.R. 2002. Effect of distillery effluent on seed germination in some vegetable crops. Bioresource Technology, 82, 273–275.
  • 73. Roig, N., Sierra, J., Nadal, M., Marti, E., Madrigal, P.N., Schuhmacher, M., Domingo, J.L. 2012. Relationship between pollutant content and ecotoxicity of sewage sludges from Spanish wastewater treatment plants. Science of the Total Environment, 425, 99–109.
  • 74. Sang, N., Han, M., Li, G., Huang, M. 2010. Landfill leachate affects metabolic responses of Zea mays L. seedlings. Waste Management, 30, 856–862.
  • 75. Sang, N. & Li, G. 2004. Genotoxicity of municipal landfill leachate on root tips of Vicia faba. Mutation Research, 560, 159–165.
  • 76. Sharma, P., Kumar, S. 2021. Characterization and phytotoxicity assessment of organic pollutants in old and fresh municipal solid wastes at open dump site: A case study. Environmental Technology & Innovation, 24, 101938.
  • 77. Siddiqi, S.A., Al-Mamun, A., Sana, A., Baawain, M.S., Choudhury, M.R. 2022. Characterization and pollution potential of leachate from urban landfills during dry and wet periods in arid regions. Water Supply, 22, 3463–3483.
  • 78. Silva, A.C., Dezotti, M., Santt Anna Jr, G.L. 2004. Treatment and detoxification of a sanitary landfill leachate. Chemosphere, 55, 207–214.
  • 79. Singh, U.K., Kumar, M., Chauhan, R., Jha, P.K., Ramanathan, AL., Subramanian, V. 2008. Assessment of the impact of landfill on groundwater quality: A case study of the Pirana site in western India. Environ. Monit. Assess, 141, 309–321.
  • 80. Sisinno, C.L.S, Oliveira-Filho, E.C., Dufrayer, M.C. Moreira, J.C., Paumgartten, F.J.R. 2000. Toxicity evaluation of a municipal dump leachate using zebrafish acute tests. Bulletin of Environmental Contamination and Toxicology, 64, 107–113.
  • 81. Sourkova, M., Adamcova, D., Zloch, J., Skutnik, Z., Vaverkova, M.D. 2020. Evaluation of the phytotoxicity of leachate from a municipal solid waste landfill: The case study of Bukov landfill. Environments, 7, 111.
  • 82. Suliasih, B.A., Othman, M.S., Heng, L.Y., Salmijah, S. 2010. Toxicity identification evaluation of landfill leachate taking a multispecies approach. Waste Manag. Environ., 140, 311–322.
  • 83. Tam, N.F.Y., Tiquia, S. 1994. Assessing toxicity of spent pig litter using a seed germination technique. Resources Conservation and Recycling, 11, 261–274.
  • 84. Tatsi, A.A., Zouboulis, A.I. 2002. A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Advances in Environmental Research, 6, 207–219.
  • 85. Tiquia, S.M., Tam, N.F.Y. 1998. Elimination of phytotoxicity during co-composting of spent pigmanure sawdust litter and pig sludge. Bioresource Technology, 65, 43–49.
  • 86. Tiquia, S.M., Tam, N.F.Y., Hodgkiss, IJ 1996. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environmental Pollution, 93, 249–256.
  • 87. Turki, N., Bouzid, J. 2017. Effects of landfill leachate application on crops growth and properties of a Mediterranean sandy soil. Journal of Pollution Effects & Control, 5, 2–5.
  • 88. Umar, M., Aziz, H.A., Yusoff, M.S. 2010. Variability of parameters involved in leachate pollution index and determination of LPI from four landfills in Malaysia. International Journal of Chemical Engineering, 2010, 1-6.
  • 89. USEPA, 1982. Seed Germination/Root Elongation Toxicity Test. EG-12. Office of Toxic Substances. Washington, DC: United States Environmental Protection Agency.
  • 90. USEPA, 2012. Ecological effects test guideline. OCSPP 850.4100: Seedling Emergence and Seedling Growth. Washington, DC United States Environmental Protection Agency.
  • 91. Vaverkova, M.D., Zloch, J., Adamcova, D., Radziemska, M., Vyhnanek, T., Trojan, V., Winkler, J., Dordevic, B., Elb, J., Brtnicky, M. 2017. Landfill leachate effects on germination and seedling growth of hemp cultivars (Cannabis sativa L.). Waste and Biomass Valorization, 10, 369–376.
  • 92. Verbel, J.O., Bottet, C.P., la Rosa, O.D. 2008. Relationships between physicochemical parameters and the toxicity of leachates from a municipal solid waste landfill. Ecotoxicology and Environmental Safety, 70, 294–299.
  • 93. Visvanathan, C, Trankler, J., Gongming, Z. 2004. State of the art review landfill leachate treatment. Sustainable solid waste management in Asia. Asian Institute of Technology, Thailand, and Tongji University.
  • 94. Vieira, C., Droste, A. 2019. Biomonitors to evaluate the toxic potential of urban solid waste landfill leachate. Rev. Ambient. Agua., 14, 1–11
  • 95. Wada, S., Kennedy, J.A., Reed, B.M. 2011. Seedcoat anatomy and proanthocyanidins contribute to the dormancy of Rubus seed. Scientia Horticulturae, 130, 762–768.
  • 96. Wang, W., Keturi, P.H. 1990. Comparative seed germination tests using ten plant species for toxicity assessment of a metal engraving effluent sample. Water, Air, Soil Pollution, 52, 369–376.
  • 97. Ward, M.L., Bitton, G., Townsend, T., Booth, M. 2002. Determining toxicity of leachates from Florida municipal solid waste landfills using a battery of tests approach. Environmental Toxicology, 17, 258–266.
  • 98. Wdowczyk, A., Pulikowska, A.S. 2021. Comparison of landfill leachate properties by LPI and phytotoxicity case study. Front. Environ. Sci., 9, 1–14.
  • 99. Welter, J.B., Soares, E.V., Rotta, E.H., Seibert, D. 2018. Bioassays and Zahn-Wellens test assessment on landfill leachate treated by photo-Fenton process. Journal of Environmental Chemical Engineering, 6, 1390–1395.
  • 100. Zaltauskaite, J., Cypaite, A. 2008. Assessment of landfill leachate toxicity using higher plants. Environmental Research, Engineering and Management, 4, 42–47.
  • 101. Zulkepli, M.H.A., Shahid, N.S.M., Ishak, A.R., Shafie, F.A., Yatim, S.R.M., Rajan, S. 2019. Phytotoxicity of leachate from closed sanitary landfill on mung bean seed (Vigna radiata). Health Scope, 1, 189–192.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37421648-bb18-4c90-b502-a973a75e265d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.