Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
Computer Applications in Electrical Engineering (15-16.04.2019 ; Poznań, Polska)
Języki publikacji
Abstrakty
The paper presents transmission models of a parametric filter with non-periodically variable parameters and a fractional-order filter. The responses of these filters on a unit step excitation have been examined as well as the dependence of filters time responses on their parameters. The obtained results have been illustrated by examples.
Rocznik
Tom
Strony
133--142
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
- Silesian University of Technology
autor
- Silesian University of Technology
Bibliografia
- [1] Richards J.A., Analysis of periodically time-varying systems, Springer-Verlag Berlin Heidelberg, New York, 1983.
- [2] van Staveren A., Cordenier T.H.A.J., Kuijstermans F.C.M., van Kloet P., Neerhoff F.L., Verhoeven C.J.M., van Roermund A.H.M., The linear time-varying approach applied to the design of a negative class -B output amplifier, Proc. ISCAS 1999, Orlando, USA, 1999, pp. II-204-207.
- [3] Da Cunha J., Stability for time varying linear dynamic systems on time scales, Journal of Computational and Applied Mathematics 2005, no. 176, 2005, pp. 381–410.
- [4] Piwowar A., Walczak J., Impulse responses of generalized first order LTV sections , Lect. Notes Electrical Eng. Book Title: Analysis and Simulation of Electrical and Computer Systems, Springer, 2014, vol. 324, chapter 6, pp. 73–79.
- [5] Schnell K., Lacroix A., Model-based analysis of speech and audio signals for real-time processing based on time-varying lattice filters, IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2009, pp. 3973–3976.
- [6] Zhang H., Guoan B., Zhao L., Razul S.G., See C.-M.S., Time varying filtering and separation of nonstationary FM signals in strong noise environments. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2014, pp. 4171–4175.
- [7] Jaskuła M., Averaging brainstem auditory evoked potentials with parametric filter. 2000, Conf.: Methods and models in automation and robotics, MMAR 2000, vol. 2, pp. 961–964.
- [8] Grabowski D., Maciążek M., Pasko M., Piwowar A., Time-invariant and time-varying filters versus neural approach applied to DC component estimation in control algorithms of active power filters. Applied Mathematics and Computation 2018, vol. 319, pp. 203–217.
- [9] Ou B., Liu D., Chaotic attractor generation via a simple linear time-varying system. Discrete Dynamics in Nature and Society, Vol. 2010, Article ID 840346, 9 pages, 2010. doi:10.1155/2010/840346.
- [10] Kluszczyński K., Domin J., Two module electromagnetic launcher with pneumatic assist modelling, computer simulations and laboratory investigations, COMPEL, 2015, vol. 34 no. 3, pp. 691–709.
- [11] Polyanin A.D., Zaitsev V.F., Handbook of exact solutions for ordinary differentia equations, 2nd Edition, Chapman & Hall/CRC, Boca Raton, 2003.
- [12] Bošković M.Č., Šekara T.B., Lutovac B., Daković M., Mandić P.D., Lazarević M.P., Analysis of electrical circuits including fractional order elements, 6th Mediterranean Conference on Embedded Computing (MECO), Bar, 2017, pp. 1–6.
- [13] Wang Y., Liu L., Liu Ch., Zhu Z., Fractional-order adaptive backstepping control of a noncommensurate fractional-order ferroresonance system, Mathematical Problems in Engineering, Volume 2018, Article ID 8091757, 10 pages.
- [14] Rafik F., Gualous H., Gallay Y., Frequency, thermal and voltage supercapacitor characterisation and modelling, Journal of Power Sources, Vol. 165, March 2007, pp. 928–934.
- [15] Schafer J., Kruger K., Modeling of coils using fractional derivatives, Journal of Magnetism and Magnetic Materials, Vol. 307, 2006, pp. 91–98.
- [16] Radwan A.G., Maundy B.J., Elwakil A.S., Fractional-order oscillators, Oscillator Circuits, Frontiers in Design, Analysis and Applications, 2016, pp. 25–49.
- [17] Khaligh A., Zhihao L., Battery, ultracapacitor, fuel cell and hybrid energy storage systems for electric, hybrid electric, fuel cell and plug-in hybrid electric vehicles, state of the art, IEEE Trans. on Vehicular Technology, Vol. 59, No. 6, 2010, pp. 2806–2814.
- [18] Radwan A., Soliman A., Elwakil A., First-order filters generalized to the fractional domain , Journal of Circuits Systems and Computers, vol. 17, no. 1, 2008, pp. 55–66.
- [19] Tsirimokou G., Psychalinos C., Elwakil A., Fractional-order electronically controlled generalized filters, International Journal of Circuit Theory and Applications, vol. 45, 2017, pp. 595–612.
- [20] Helie T., Simulation of fractional-order low-pass filters, Trans. on Audio, Speech and Language Processing, vol. 22, no. 11, 2014, pp. 1636–1647.
- [21] Tsirimokou G., Psychalinos C., Elwakil A., Design of CMOS analog integrated fractional-order circuits: applications in medicine and biology, Springer Briefs in Electrical and Computer Engineering, Springer, 2017.
- [22] Podlubny I., Fractional Differential Equations, Academic Press, London, 1999, pp. 78–81.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-373bac41-4306-45f6-950e-43cccc9fff49