PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of fuzzy logic in a secure beacon-based guidance system for public transportation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Promoting the use of public transport is increasingly urgent in our society, both to reduce traffic congestion, air pollution and stress levels, and to ensure the high level of mobility demanded by citizens. The lack of continuous on-trip assistance for public transport users discourages many travellers. Thus, the main objective of this work is to design a personal digital travel companion for outdoor location and event detection based on Bluetooth Low Energy, which can be used for intelligent transport technology. After analysing the functional requirements, the proposal is implemented as a mobile application for beacon-based event detection. The system includes an algorithm aided by fuzzy logic to determine the action to be carried out by the user at all times, being able to distinguish between different possible events when more than one beacon is detected. To defend the scheme against possible attacks based on beacon forgery or user tracking, the proposal includes different forms of authentication for data sent from beacons and data sent from the mobile application. The results obtained in simulations show that the proposed system is a viable guidance solution for public transport, including energy saving as one of its main advantages.
Rocznik
Strony
371--387
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • Department of Computer Engineering and Systems, University of La Laguna, Camino San Francisco de Paula, 19, 38200 La Laguna, Spain
  • Department of Computer Engineering and Systems, University of La Laguna, Camino San Francisco de Paula, 19, 38200 La Laguna, Spain
  • Cybernetic Science and Technology Institute, University of Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas, Spain
  • Cybernetic Science and Technology Institute, University of Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas, Spain
Bibliografia
  • [1] 330ohms (2021). Bluetooth, clases y versiones desde v1.0 hasta v5.0., https://blog.330ohms.com/2017/02/02/bluetooth-clases-y-versiones-desde-v1-0-hasta-v5-0/.
  • [2] Alnahari, A.Y., Ahmad, N.A. and Yusof, Y. (2017). Wireless sensor network based outdoor and indoor positioning system (WOIPS) featured with IoT, Proceedings of the International Conference on Imaging, Signal Processing and Communication, New York, USA, pp. 153–157.
  • [3] Bahl, P. and Padmanabhan, V.N. (2000). RADAR: An in-building RF-based user location and tracking system, INFOCOM, Tel Aviv, Israel, pp. 775–784.
  • [4] Barbeau, S.J., Borning, A. and Watkins, K. (2014). One-bus-away multi-region—Rapidly expanding mobile transit APPS to new cities, Journal of Public Transportation 17(4): 3.
  • [5] Bluetooth (2021). Proximity and RSSI, http://blog.bluetooth.com/proximity-and-rssi.
  • [6] Boneh, D., Lynn, B. and Shacham, H. (2001). Short signatures from the Weil pairing, in C. Boyd (Ed.), Advances in Cryptology—ASIACRYPT 2001, Springer, Berlin/Heidelberg, pp. 514–532.
  • [7] Cao, S., Shao, H. and Shao, F. (2022). Sensor location for travel time estimation based on the user equilibrium principle: Application of linear equations, International Journal of Applied Mathematics and Computer Science 32(1): 23–33, DOI: 10.34768/amcs-2022-0003.
  • [8] Castillo-Cara, M., Huaranga-Junco, E., Mondragón-Ruiz, G., Salazar, A., Orozco-Barbosa, L. and Antúnez, E.A. (2016). RAY: Smart indoor/outdoor routes for the blind using Bluetooth 4.0 BLE, in E.M. Shakshuki (Ed.), 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016)/6th International Conference on Sustainable Energy Information Technology (SEIT-2016)/Affiliated Workshops, Elsevier, Amsterdam, pp. 690–694.
  • [9] Cheng, R.-S., Hong, W.-J., Wang, J.-S. and Lin, K.W. (2016). Seamless guidance system combining GPS, BLE beacon, and NFC technologies, Mobile Information Systems 2016, DOI: 10.1155/2016/5032365.
  • [10] Christmann, S., Caus, T. and Hagenhoff, S. (2008). Personalized public-transport guidance using mobile end devices, Towards Sustainable Society on Ubiquitous Networks, pp. 185–195.
  • [11] Cristóbal, T., Padrón, G., Quesada-Arencibia, A., Alayón, F. and García, C.R. (2018). Systematic approach to analyze travel time in road-based mass transit systems based on data mining, IEEE Access 6: 32861–32873, DOI: 10.1109/ACCESS.2018.2837498.
  • [12] Czogalla, O. and Naumann, S. (2015). Pedestrian guidance for public transport users in indoor stations using smartphones, IEEE International Conference on Intelligent Transportation Systems, Canary Islands, Spain, pp. 2539–2544.
  • [13] Czurak, P., Maj, C., Szermer, M. and Zabierowski, W. (2018). Impact of Bluetooth low energy on energy consumption in Android OS, 2018 14th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), Lviv, Ukraine, pp. 255–258.
  • [14] DAMADICS (2021). Website of world population, https://www.worldometers.info.
  • [15] Dasgupta, A., Nagaraj, R. and Nagamani, K. (2016). An internet of things platform with Google Eddystone beacons, Journal of Software Engineering and Applications 9(06): 291.
  • [16] de Blasio, G., Quesada-Arencibia, A., García, C.R., Molina-Gil, J.M. and Caballero-Gil, C. (2017a). Study of dynamic factors in indoor positioning for harsh environments, in S.F. Ochoa et al. (Eds), Ubiquitous Computing and Ambient Intelligence, Springer International Publishing, Cham, pp. 67–78.
  • [17] de Blasio, G., Quesada-Arencibia, A., García, C.R., Molina-Gil, J.M. and Caballero-Gil, C. (2017b). Study on an indoor positioning system for harsh environments based on Wi-Fi and Bluetooth Low Energy, Sensors 17(6): 1299, DOI: 10.3390/s17061299.
  • [18] de Blasio, G., Quesada-Arencibia, A., García, C.R., Rodríguez-Rodríguez, J.C. and Moreno-Díaz, R. (2018). A protocol-channel-based indoor positioning performance study for Bluetooth Low Energy, IEEE Access 6: 33440–33450, DOI: 10.1109/ACCESS.2018.2837497.
  • [19] de Blasio, G., Quesada-Arencibia, A., García-Rodríguez, C.R., Molina-Gil, J.M. and Caballero-Gil, C. (2016). Ubiquitous signaling system for public road transport network, in C. García et al. (Eds), Ubiquitous Computing and Ambient Intelligence. IWAAL AmIHEALTH UCAmI 2016, Lecture Notes in Computer Science, Vol. 10070, Springer, Berlin/Heidelberg, pp. 445–457, DOI: 10.1007/978-3-319-48799-149.
  • [20] Dell’Acqua, G. and Wegman, F. (2017). Transport Infrastructure and Systems: Proceedings of the AIIT International Congress on Transport Infrastructure and Systems, Rome, Italy, p. 1154.
  • [21] DeviceAtlas (2018). Android vs iOS market share, https://deviceatlas.com/blog/android-v-ios-market-share.
  • [22] Dridi, M. and Kacem, I. (2004). A hybrid approach for scheduling transportation networks, International Journal of Applied Mathematics and Computer Science 14(3): 397–409.
  • [23] Faragher, R. and Harle, R. (2015). Location fingerprinting with Bluetooth Low Energy beacons, IEEE Journal on Selected Areas in Communications 33(11): 2418–2428.
  • [24] Ferreira, M.C., Dias, T.G. and Falcão e Cunha, J. (2022). ANDA: An innovative micro-location mobile ticketing solution based on NFC and BLE technologies, IEEE Transactions on Intelligent Transportation Systems 23(7): 6316–6325, DOI: 10.1109/TITS.2021.3072083TITS.2021.3072083.
  • [25] Ferreira, M.C., Fontesz, T., Costa, V., Dias, T.G., Borges, J.L. and e Cunha, J.F. (2017). Evaluation of an integrated mobile payment, route planner and social network solution for public transport, Transportation Research Procedia 24(2017): 189–196.
  • [26] Foell, S., Kortuem, G., Rawassizadeh, R., Handte, M., Iqbal, U. and Marron, P. (2014). Micro-navigation for urban bus passengers: Using the Internet of things to improve the public transport experience, Proceedings of the 1st International Conference on IoT in Urban Space, Rome, Italy, pp. 1–6.
  • [27] Gurmu, Z.K. and Fan, W.D. (2014). Artificial neural network travel time prediction model for buses using only GPS data, Journal of Public Transportation 17(2): 3.
  • [28] Handte, M., Foell, S., Wagner, S., Kortuem, G. and Marron, P.J. (2016). An Internet-of-things enabled connected navigation system for urban bus riders, IEEE Internet of Things Journal 3(5): 735–744.
  • [29] Hoare, C.A. (1962). Quicksort, The Computer Journal 5(1): 10–16.
  • [30] Huang, C.-H., Lee, L.-H., Ho, C.C., Wu, L.-L. and Lai, Z.-H. (2015). Real-time RFID indoor positioning system based on Kalman-filter DRIFT removal and heron-bilateration location estimation, IEEE Transactions on Instrumentation and Measurement 64(3): 728–739.
  • [31] Jafri, R. and Khan, M.M. (2018). User-centered design of a depth data based obstacle detection and avoidance system for the visually impaired, Human-centric Computing and Information Sciences 8(1): 14.
  • [32] Kaemarungsi, K. and Krishnamurthy, P. (2004). Properties of indoor received signal strength for WLAN location fingerprinting, 1st Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, MOBIQUITOUS 2004, Boston, USA, pp. 14–23.
  • [33] Kjærgaard, M.B. (2011). Indoor location fingerprinting with heterogeneous clients, Pervasive and Mobile Computing 7(1): 31–43.
  • [34] Lee, J.K., Jeong, Y.S. and Park, J.H. (2015). S-ITSF: A service based intelligent transportation system framework for smart accident management, Human-centric Computing and Information Sciences 5(1): 34.
  • [35] Lin, X.-Y., Ho, T.-W., Fang, C.-C., Yen, Z.-S., Yang, B.-J. and Lai, F. (2015). A mobile indoor positioning system based on iBeacon technology, 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, pp. 4970–4973, DOI: 10.1109/EMBC.2015.7319507.
  • [36] Luo, H., Li, Y., Wang, J., Weng, D., Ye, J., Hsu, L.-T. and Chen, W. (2021). Integration of GNSS and BLE technology with inertial sensors for real-time positioning in urban environments, IEEE Access 9(2021): 15744–15763.
  • [37] Mackey, A. and spachos, p. (2019). experimental comparison of energy consumption and proximity accuracy of BLE beacons, 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, pp. 1–6.
  • [38] Mahyuddin, M., Isa, A., Zin, M., AH, A.M., Manap, Z. and Ismail, M. (2017). Overview of positioning techniques for LTE technology, Journal of Telecommunication, Electronic and Computer Engineering 9(2–13): 43–50.
  • [39] Moorthi, P., Singh, A.P. and Agnivesh, P. (2018). Regulation of water resources systems using fuzzy logic: A case study of Amaravathi dam, Applied Water Science 8(5): 132.
  • [40] nRF5340 (2022). nrf5340 Product Specification v1.2., Nordic Semiconductor Infocenter, Trondheim, https://infocenter.nordicsemi.com/pdf/nRF5340_PS_v1.2.pdf.
  • [41] Orujov, F., Maskeliūnas, R., Damaševičius, R., Wei, W. and Li, Y. (2018). Smartphone based intelligent indoor positioning using fuzzy logic, Future Generation Computer Systems 89: 335–348, DOI: 10.1016/j.future.2018.06.030.
  • [42] Pätzold, J., Schiewe, A. and Schöbel, A. (2018). Cost-minimal public transport planning, in R. Borndörfer and S. Storandt (Eds), 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, OASIcs—OpenAccess Series in Informatics, Vol. 65, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl.
  • [43] Pu, Y.-C. and You, P.-C. (2018). Indoor positioning system based on BLE location fingerprinting with classification approach, Applied Mathematical Modelling 62: 654–663, DOI: 10.1016/j.apm.2018.06.031.
  • [44] Rathod, R. and Khot, S. (2016). Smart assistance for public transport system, International Conference on Inventive Computation Technologies (ICICT), Bhubaneswar, India, Vol. 3, pp. 1–5.
  • [45] Rida, M.E., Liu, F., Jadi, Y., Algawhari, A.A.A. and Askourih, A. (2015). Indoor location position based on Bluetooth signal strength, 2015 2nd International Conference on Information Science and Control Engineering, Shanghai, China, pp. 769–773.
  • [46] Schott, D., Höflinger, F., Zhang, R., Reindl, L.M. and Yang, H. (2017). Fuzzy inference system assisted inertial localization system, 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), Madeira Island, Portugal, pp. 89–93.
  • [47] Şen, Z. (2017). Intelligent business decision-making research with innovative fuzzy logic system, International Journal of Research, Innovation and Commercialisation 1(1): 93–111.
  • [48] Stelzer, A., Englert, F., Hörold, S. and Mayas, C. (2016). Improving service quality in public transportation systems using automated customer feedback, Transportation Research E: Logistics and Transportation Review 89(2016): 259–271.
  • [49] StreetsblogUSA (2021). Eleven simple ways to speed up your city’s buses, https://usa.streetsblog.org/2014/04/18/11-simple-ways-to-speed-up-your-citys-buses/.
  • [50] Techspirited (2021). Wi-Fi Direct vs Bluetooth 4.0, https://techspirited.com/wi-fi-direct-vs-bluetooth40.
  • [51] United Nations (2019). World Population Prospects: The 2012 Revision (2013), Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, New York, https://population.un.org/wpp/.
  • [52] World, R.W. (2021). Bluetooth vs BLE—Difference between Bluetooth and BLE, http://www.rfwireless-world.com/Terminology/Bluetooth-vs-BLE.html.
  • [53] Yang, C. and Shao, H.-R. (2015). WiFi-based indoor positioning, IEEE Communications Magazine 53(3): 150–157.
  • [54] Zadeh, L.A. (1988). Fuzzy logic, Computer 21(4): 83–93.
  • [55] Zhang, L., Gupta, S.D., Li, J.-Q., Zhou, K. and Zhang, W.-B. (2011). Path2go: Context-aware services for mobile real-time multimodal traveler information, 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington DC, USA, pp. 174–179.
  • [56] Zhu, J., Luo, H., Chen, Z. and Li, Z. (2014). RSSI based Bluetooth Low Energy indoor positioning, International Conference on Indoor Positioning and Indoor Navigation, Busan, South Korea, pp. 526–533.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37324490-6346-4935-88eb-9dd6b974c878
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.