PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water film structure during rupture as revealed by MDS image analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The structure of thin water films during the rupture process was investigated by a new approach, which combines molecular dynamics simulation (MDS) with image processing analysis. The analysis procedure was developed to convert MDS trajectories to readable 3D images. The water films were studied at different thicknesses by MDS to determine the critical thickness at which the film ruptures. The potential energy of each specific film thickness during the simulation time was analyzed, and the results showed that the potential energy of stable films remained unchanged while the potential energy kept decreasing for films which ruptured during the simulation time. By applying the new procedure, the molecular porosity, which is defined as the void fraction between the volume of molecular pores in the water film and the total volume of the water film, was calculated. The results of molecular porosity for different film thicknesses during the simulation time suggested a critical molecular porosity as 49%. In other words, stable films have a molecular porosity of less than 49%. If a water film has a molecular porosity greater than 49%, rupture occurs during the simulation.
Rocznik
Strony
1060--1069
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • University of Utah
autor
  • Pacific Northwest National Laboratory
autor
  • University of Utah
autor
  • University of Utah
autor
  • University of Utah
Bibliografia
  • ABRÀMOFF, M.D., MAGALHÃES, P.J., RAM, S.J., 2004. Image processing with ImageJ. Biophotonics International 11, 36-42.
  • BERGERON, V., RADKE, C.J., 1992. Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films. Langmuir 8, 3020-3026.
  • BHATT, D., NEWMAN, J., RADKE, C.J., 2002. Molecular simulation of disjoining-pressure isotherms for free liquid, Lennard-Jones thin films. The Journal of Physical Chemistry B 106, 6529-6537.
  • BONDI, A., 1964. van der Waals volumes and radii. The Journal of Physical Chemistry 68, 441-451.
  • EXEROWA, D., NIKOLOV, A., ZACHARIEVA, M., 1981. Common black and Newton film formation. Journal of Colloid and Interface Science 81, 419-429.
  • EXEROWA, D., KOLAROV, T., KHRISTOV, K., 1987. Direct measurement of disjoining pressure in black foam films. I. Films from an ionic surfactant. Colloids and Surfaces 22, 161-169.
  • FUERSTENAU, M.C., HAN, K.N.,2003, Principles of mineral processing, SME, Littleton, CO, USA.
  • JANG, S.S., GODDARD, W.A., 2006. Structures and properties of Newton black films characterized using molecular dynamics simulations. The Journal of Physical Chemistry B 110, 7992-8001.
  • JARVIS, N., LARSBO, M., KOESTEL, J., 2017. Connectivity and percolation of structural pore networks in a cultivated silt loam soil quantified by X-ray tomography. Geoderma 287, 71-79.
  • KARAKASHEV, S.I., MANEV, E.D., NGUYEN, A.V., 2008. Effect of double-layer repulsion on foam film drainage. Colloids and Surfaces A: Physicochemical and Engineering Aspects 319, 34-42.
  • MILLER, J., LIN, C., 2009. High resolution X-ray micro CT (HRXMT)–Advances in 3D particle characterization for mineral processing operations. Recent Advances in Mineral Processing Plant Design, D. Malhotra, P.R.Taylor, E. Spiller and M. Levier. eds., SME, Littleton, CO, 48.
  • MISHRA, N.C., MURUGANATHAN, R.M., MÜLLER, H.J., KRUSTEV, R., 2005. The dependence of the interactions in foam films on surfactant concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects 256, 77-83.
  • MYSELS, K.J., 1959. Soap films: studies of their thinning and a bibliography. Pergamon Press.
  • PENG, T., PENG, K., LI, Q., 2015. Methodology for disjoining pressure of free water nanofilms. The Journal of Physical Chemistry C 119, 14273-14280.
  • PENG, T.F., NGUYEN, A.V., PENG, H., DANG, L.X., 2012. Quantitative analysis of aqueous nanofilm rupture by molecular dynamic simulation. The Journal of Physical Chemistry B 116, 1035-1042.
  • RENARD, P., ALLARD, D., 2013. Connectivity metrics for subsurface flow and transport. Advances in Water Resources 51, 168-196.
  • SCHELERO, N., VON KLITZING, R., 2015. Ion specific effects in foam films. Current Opinion in Colloid & Interface Science 20, 124-129.
  • SCHELUDKO, A., EXEROWA, D., 1959. Über den elektrostatischen Druck in Schaumfilmen aus wässerigen Elektrolytlösungen. Colloid & Polymer Science 165, 148-151.
  • WENG, J.-G., PARK, S., LUKES, J.R., TIEN, C.-L., 2000. Molecular dynamics investigation of thickness effect on liquid films. The Journal of Chemical Physics 113, 5917-5923.
  • YANG, W., WU, R., KONG, B., ZHANG, X., YANG, X., 2009. Molecular dynamics simulations of film rupture in water/surfactant systems. The Journal of Physical Chemistry B 113, 8332-8338.
  • YOON, R.-H., AKSOY, B.S., 1999. Hydrophobic forces in thin water films stabilized by dodecylammonium chloride. Journal of Colloid & Interface Science 211, 1-10.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37317dd4-3724-4bd1-a393-b1d199805de3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.