Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This preliminary study examines the potential effects of diagenetic processes on the oxygen-isotope ratios of bone and tooth phosphate (δ18O) from skeletal material of individuals representing the Corded Ware Culture (2500–2400 BC) discovered in Malżyce (Southern Poland). Intra-individual variability of Ca/P, CI, C/P, collagen content (%) and oxygen isotopes was observed through analysis of enamel, dentin and postcranial bones. Using a variety of analytical techniques, it was found that, despite the lack of differences in soil acidity, not all the parts of a skeleton on a given site had been equally exposed to diagenetic post mortem changes. In a few cases, qualitative changes in the FTIR spectrum of analysed bones were observed. The data suggest that apart from quantitative analyses, i.e., the calculation of Ca/P, CI, C/P and collagen content, qualitative analyses such as examination of the absorbance line are recommended. The degree to which a sample is, contaminated on the basis of any additional, non-biogenic peaks, deemed to be contaminated should also be specified.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
93--112
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
- Department of Anthropology, Institute of Zoology, Jagiellonian University, Kraków, Poland
autor
- Department of Anthropology, Institute of Zoology, Jagiellonian University, Kraków, Poland
autor
- Department of Anthropology, Institute of Zoology, Jagiellonian University, Kraków, Poland
autor
- Department of Anthropology, Institute of Zoology, Jagiellonian University, Kraków, Poland
autor
- Department of Anthropology, Institute of Zoology, Jagiellonian University, Kraków, Poland
autor
- Institute of Archaeology and Ethnology PAN, Kraków, Poland
autor
- Institute of Archaeology and Ethnology PAN, Kraków, Poland
autor
- Institute of Archaeology and Ethnology PAN, Kraków, Poland
autor
- Department of Radioisotopes, Institute of Physics, Silesian University of Technology, Gliwice, Poland
autor
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
autor
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Kraków, Poland
Bibliografia
- Ambrose, S. H. (1993). Isotopic analysis of paleodiets: Methodological and interpretive consideration. In M. K. Sandford (Ed.), Investigations of Ancient Human Tissue: Chemical Analyses in Anthropology (pp. 50-130). Landorne PA: Gordon and Breach.
- Ambrose, S. H. & Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In J. B. Lambert & G. Grupe (Eds.), Prehistoric Human Bone: Archaeology at the Molecular Level (pp. 1-37). Berlin: Springer-Verlag.
- Ballasse, M. (2003). Potential biases in sampling design and interpretation of intra-tooth isotope analysis. International Journal of Osteoarchaeology 13(1-2), 3-10. DOI: 10.1002/oa.656.
- Bell, L. S., Skinner, M. F., & Jones, S. J. (1996). The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Science International 82(2), 129-140. DOI: 10.1016/0379-0738(96)01984-6.
- Bocherens, H. (1997). Isotopic biogeochemistry as a marker of Neandertal diet. Anthropologischer Anzeiger 55(2), 101-120.
- Brady, A. L., White, Ch. D., Longstaffe, F. J., & Southam, G. (2008). Investigating intra-bone isotopic variations in biopatite using IR-laser ablation and micromilling: Implications for identifying diagenesis. Palaeogeography, Palaeoclimatology, Palaeoecology 266(3-4), 190-199. DOI:10.1016/j.palaeo.2008.03.031.
- Buckberry, J. (2000). Missing, presumed buried? Bone diagenesis and the under-representation of Anglo-Saxon children. Assemblage 5, 1-14.
- Child, A. M. (1995). Towards and understanding of the microbial decomposition of archaeological bone in the burial environment. Journal of Archaeological Science 22(2), 165-174. DOI:10.1006/jasc.1995.0018.
- Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C. I., Roberts, J. P., Prigodich, R. V., Wess, T. J., Csapò, J., Millard, A. R., & Turner–Walker, G. (2002). The survival of organic matter in bone: a review. Archaeometry 44(3), 383–394. DOI: 10.1111/1475-4754.t01-1-00071.
- Dupras, T. L., & Schwarcz, H. P. (2001). Strangers in a strange land: stable isotope evidence for human migration in the Dakhleh Oasis, Egypt. Journal of Archaeological Science 28(11), 1199-1208. DOI: 10.1006/jasc.2001.0640.
- Evans, J. A., Chenery, C. A., & Fitzpatrick, A., P. (2006). Bronze age childhood migration of individuals near Stonehenge, revealed by strontium and oxygen isotope tooth enamel analysis. Archaeometry 48(2), 309-321. DOI: 10.1111/j.1475-4754.2006.00258.x.
- Fabig, A., & Herrmann, B. (2002) Trace elements in buried human bones: intra – population varability of Sr/Ca and Ba/Ca ratios – diet or diagenesis? Naturwissenschaften 89(3): 115-119. DOI: 10.1007/s00114-001-0294-7.
- Goldstein, J. I., & Yakowitz, H. (1975). Practical Scanning Electron Microscopy. New York: Plenum Press.
- Grupe, G., Dreses-Werringloer, U., & Parsche, F. (1993). Initial stages of bone decomposition: Causes and consequences. In J. B. Lambert & G. Grupe (Eds.), Prehistoric Human Bone: Archaeology at the Molecular Level (pp. 257-274). Berlin: Springer-Verlag.
- Grupe, G., Piepenbrink, H., & Schoeninger, M. J. (1989). Note on microbial influence on stable carbon and nitrogen isotopes in bone. Applied Geochemistry 4, 299.
- Hedges, R. E. M. (2002). Bone diagenesis: an overview of processes. Archaeometry 44(3), 319-328. DOI: 10.1111/1475-4754.00064.
- Jans, M. M. E., Nielsen-Marsh, C. M., Smith, C. I., Collins, M. J., & Kars, H. (2004). Characterization of microbial attack on archaeological bone. Journal of Archaeological Science 31(1), 87-95. DOI: 10.1016/j.jas.2003.07.007.
- Jarosz, P., Tunia, K., & Włodarczak, P. (2009). Burial mound No. 2 in Malżyce, the district of Kazimierza Wielka / Grobowiec nr 2 w Malżycach, pow. Kazimierza Wielka. Sprawozdania Archeologiczne 61, 175-231.
- Jørkov, M. L. S., Heinemeier, J., & Lynnerup, N. (2007). Evaluating bone collagen extraction methods for stable isotope analysis in dietary studies. Journal of Archaeological Science 34(11), 1824-1829. DOI: 10.1016/j.jas.2006.12.020.
- Kohn, M. J., Schoeninger, M. J., & Barker, W. W. (1999). Altered states: Effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta 63(18), 2737-2747. DOI: 10.1016/S0016-7037(99)00208-2.
- Kondracki, J. (2000). Geografia regionalna Polski, Warszawa: PWN.
- Krueger, H. W. (1991). Exchange of carbon with biological apatite. Journal of Archaeological Science 18(3), 355-361. DOI: 10.1016/0305-4403(91)90071-V.
- LaPorte, D. F., Holmden C., Patterson W. P., Prokopiuk T., & Eglington B. M. (2008) Oxygen isotope analysis of phosphate: improved precision using TC/EA CF-IRMS. Journal of Mass Spectrometry 44(6), 879-890. DOI: 10.1002/jms.1549.
- Lécuyer, C., Fourel, F., Martineau, F., Amiot, R., Bernard, A., Daux, V., Escarguel, G., & Morrison, J. (2007). High-precision determination of 18O/16O ratios of silver phosphate by EA-pyrolysis-IRMS continuous flow technique. Journal of Mass Spectrometry 42(1), 36-41. DOI: 10.1002/jms.1130.
- Lécuyer, C., Grandjean, P., & Emig, C. (1996). Determination of oxygen isotope fractionation between water and phosphate from living lingulids: Potential application to palaeoenvironmental studies. Palaeogeography, Palaeoclimatology, Palaeoecology 126(1-2), 101–108. DOI: 10.1016/S0031-0182(96)00073-9.
- Lee-Thorp, J. (2002). Two decades of progress towards understanding fossilization processes and isotopic signals in calcified tissue minerals. Archaeometry 44(3), 435-446. DOI: 10.1111/1475-4754.t01-1-00076.
- Lee-Thorp, J., & Sponheimer, M. (2006). Contributions of biogeochemistry to understanding Hominin dietary ecology. Yearbook of Physical Anthropology 131(43), 131-148. DOI: 10.1002/ajpa.20519.
- Lee-Thorp, J.A., & van der Merwe, N.J. (1991). Aspects of the chemistry of modern and fossil biological apatite. Journal of Archaeological Science 18(3), 343-354. DOI: 10.1016/0305-4403(91)90070-6.
- Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research. Geochimica et Cosmochimica Acta 48(2), 385-390. DOI: 10.1016/0016-7037(84)90259-X.
- Luz, B., Kolodny, Y., & Horowitz, M. (1984). Fractionation of oxygen isotopes between mammalian bonephosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48(8), 1689-1693. DOI: 10.1016/0016-7037(84)90338-7.
- Nielsen-Marsh, Ch. M., & Hedges, R. E. M. (2000). Patterns of diagenesis in bone I: The effects of site environments. Journal of Archaeological Science 27(12), 1139-1150. DOI: 10.1006/jasc.1999.0537.
- O'Neil, J. R., Roe, L. J., Reinhard, E., & Blake, R. E. (1994). A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Israel Journal of Earth Sciences 43, 203-212.
- Pearsal, D. M. (2008). Paleoethnobotany. A Handbook of Procedures. Cornwall: MPG Books.
- Reitsema, L. J, Crews D. E., & Polcyn M. (2010). Preliminary evidence for medieval Polish diet from carbon and nitrogen stable isotopes. Journal of Archaeological Science 37(7), 1413-1423. DOI: 10.1016/j.jas.2010.01.001.
- Schoeninger, M. J., & Moore, K. (1992). Bone stable isotope studies in archaeology. Journal of World Prehistory 6(2), 247-295. DOI: 10.1007/BF00975551.
- Sponheimer, M., & Lee-Thorp, J. A. (2006). Enamel diagenesis at South African Australopith sites: Implications for paleoecological reconstruction with trace elements. Geochimica et Cosmochimica Acta 70(7), 1644-1654. DOI: 10.1016/j.gca.2005.12.022.
- Stephan, E. (1997). Patterns of chemical change in fossil bones and various states of bone preservation associated with soil conditions. Anthropozoologica 25, 173-180.
- Szczepanek A. (2009). The anthropological analysis of skeletons from tomb no. 2 in Malżyce. Sprawozdania Archeologiczne 61, 233-242.
- Thompson, T. J. U., Gauthier, M., & Islam, M. (2009). The application of a new method of Fourier Transform Spectroscopy to the analysis of burned bone. Journal of Archaeological Science 36(3), 910-914. DOI: 10.1016/j.jas.2008.11.013.
- Vennemann, T. W., Fricke, H. C., Blake, R. E., O’Neil, J. R., & Colman, A. (2002). Oxygen isotope analysis of phosphates: A comparison of techniques for analysis of Ag3PO4. Chemical Geology 185(3-4), 321-336. DOI: 10.1016/S0009-2541(01)00413-2.
- Weiner, S., & Bar-Yosef, O. (1990). States of preservation of bones from prehistoric sites in the Near East: a survey. Journal of Archaeological Science 17(2), 187-196. DOI: 10.1016/0305-4403(90)90058-D.
- White, T. D., & Folkens, P. A. (2005). The human bone manual. Elsevier Accademic Press.
- White, C., Longstaffe, F. J., & Law, K. R. (2004). Exploring the effects of environment, physiology and diet on oxygen isotope ratios in ancient Nubian bones and teeth. Journal of Archaeological Science 31(2), 233-250. DOI: 10.1016/j.jas.2003.08.007.
- White, C. D., Spence, M. W., Stuart-Williams, Q., & Schwacz, H. P. (1998). Oxygen isotopes and the identification of geographical origins: the Valley of Oaxaca versus the Valley of Mexico. Journal of Archaeological Science 25(7), 643-655. DOI: 10.1006/jasc.1997.0259.
- Włodarczak, P. (2006). Kultura ceramiki sznurowej na Wyżynie Małopolskiej. Kraków.
- Wright, L. E., & Schwarcz, H. P. (1996). Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: Paleodietary Implications. Journal of Archaeological Science 23(6), 933-944. DOI: 10.1006/jasc.1996.0087.
- Wright, L. E., & Schwarcz, H. P. (1999). Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentine: infants diets at Kaminaljuyú. Journal of Archaeological Science 26(9), 1159-1170. DOI: 10.1006/jasc.1998.0351.
- Yoshino, M., Kimijima, T., Miyasaka, S., Sato, H., & Seta, S. (1991). Microscopical study on time science death in skeletal remains. Forensic Science International 49(2), 143-158. DOI: 10.1016/0379-0738(91)90074-S.
- Zazzo, A., Lécuyer, Ch., & Mariotti, A. (2004). Experimentally controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially mediated conditions. Geochimica et Cosmochimica Acta 68(1), 1-12. DOI: 10.1016/S0016-7037(03)00278-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3730ff0c-4385-48a7-a6e8-752594fab424