PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure, Texture and Tensile Properties of Ti6Al4V Produced by Selective Laser Melting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive manufacturing has recently expanded its potential with the development of selective laser melting (SLM) of metallic powders. This study investigates the relation between the mechanical properties and the microstructure of Ti6Al4V alloy produced by SLM followed by a hot isostatic pressing (HIP) treatment. HIP treatment minimizes the detrimental influence of material defects. Tensile specimens produced with reference to specific building axes were prepared using a Renishaw A250 system. It has been found that the tensile strength and elongation depend on specimen building direction. Microstructural and textural characterizations were carried out to identify the source of differences.
Rocznik
Tom
Strony
60--65
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Department of Materials Engineering, University of Žilina, Univerzitná 1, 01026 Žilina, Slovak Republic
  • Department of Materials Engineering, University of Žilina, Univerzitná 1, 01026 Žilina, Slovak Republic
  • Department of Industrial Engineering, University of Parma, Parco Area delle Scienze 181/A, 43100 Parma, Italy
Bibliografia
  • 1. Bača, A., Konečná, R., Nicoletto, G., Kunz, L., 2016. Influence of Build Direction on the Fatigue Behaviour of Ti6Al4V Alloy Produced by Direct Metal Laser Sintering. Materials Today: Proceedings, 3(4), 921-924, DOI: 10.1016/j.matpr.2016.03.021.
  • 2. Bača, A., Konečná, R., Nicoletto, G., 2017. Influence of the Direct Metal Laser Sintering Process on the Fatigue Behavior of the Ti6Al4V Alloy. Materials Science, 891, 317-321, DOI: 10.4028/www.scientific.net/MSF.891.317.
  • 3. Facchini, L., Magalini, E., Pierfrancesco, R., Molinari, A., 2009. Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders, Rapid Prototyping Journal, 15(3), 171-178, DOI: 10.1108/13552540910960262.
  • 4. Gil, F.J., Ginebra, M.P., Manero, J.M., Planell. J.A., 2001. Formation of alpha-Widmanstatten structure: effects of grain size and cooling rate on the Widmanstatten morphologies and on the mechanical properties in Ti6Al4V alloy, Journal of Alloys and Compounds, 329 (1-2), 142-152, DOI: doi.org/10.1016/S0925-8388 (01)01571-7.
  • 5. Hollander, D.A., M. von Walter, M., Wirtz, T., Sellei, R., Schmidt-Rohlfing, B., Paar, O., Erli, H.J., 2006. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming, Biomaterials, 27(7), 955-63. DOI: 10.1016/j.biomaterials.2005.07.041.
  • 6. Kahlen, F.J., Kar, A., 2001. Tensile Strengths for Laser-Fabricated Parts and Similarity Parameters for Rapid Manufacturing, Journal of Manu-facturing Science and Engineering, 123(1), 38-44, DOI: 10.1115/1.1286472.
  • 7. Konečná, R., Kunz, L., Bača, A., Nicoletto, G. 2016. Long fatigue crack growth in Ti6Al4V produced by direct metal laser sintering, Procedia Engineering, 160, 69-76, DOI: 10.1016/j.proeng.2016.08.864.
  • 8. Konečná, R., Nicoletto, G., Bača, A., Kunz, L., 2017. Metallographic Characterization and Fatigue Damage Initiation in Ti6Al4V Alloy Produced by Direct Metal Laser Sintering, Materials Science Forum, 891, 311-316, DOI: 10.4028/www.scientific.net/MSF.891.311.
  • 9. Konečná, R., Kunz, L., Bača, A., Nicoletto, G., 2017. Resistance of direct metal laser sintering Ti6Al4V alloy against growth of fatigue cracks. Eng. Fract. Mechanics, 185, 82-91, DOI: 10.1016/j.engfracmech.2017.03.033.
  • 10. Kruth, J.P., Levy, G., Klocke, F., Childs, T.H.C., 2007. Consolidation phenomena in laser and powder- bed based layered manufacturing, CIRP Annals - Manufacturing Technology, 56(2), 730-759, DOI: 10.1016/j.cirp.2007.10.004.
  • 11. Kubiak, K., Sieniawski, J., 1998. Development of the microstructure and fatigue strength of two-phase titanium alloys in the processes of forging and heat treatment, Journal of Materials Processing Technology, 78(1-3), 117-121, DOI: 10.1016/S0924-0136(97)00472-X.
  • 12. Levy, G.N., 2010. The role and future of the Laser Technology in the Additive. Manufacturing environment, Physics Procedia, 5(A), 65-80, DOI: 10.1016/j.phpro.2010.08.123.
  • 13. Lütjering, G., 1998. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys, Materials Science and Engineering: A, 243(1-2), 32-45. DOI: 10.1016/S0921-5093(97)00778-8.
  • 14. Mashl, S.J. 2015. Powder Metallurgy Processing by Hot Isostatic Pressing, ASM Handbook, 7, 260-270, DOI: 10.31399/asm.hb.v07.9781627081757.
  • 15. Rehme, O., Emmelmann, C., 2005. Reproducibility for properties of selective laser melting products, Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, Munich, 227-232.
  • 16. Thijs, L., Verhaeghe, F., Craeghs, T., Van Humbeeck, J., Kruth, J. P. 2010. A study of the micro structural evolution during selective laser melting of Ti-6Al-4V, Acta Materialia, 58(9), 3303-3312, DOI: 10.1016/j.actamat.2010.02.004.
  • 17. Vrancken, B., Thijs, L., Kruth, J. P., Van Humbeeck, J. 2012. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and Mechanical properties, Journal of Alloys and Compounds, 541(0), 177-185, DOI: 10.1016/j.jallcom. 2012.07.022.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-372f6155-d832-4ec0-a17d-dd3f14e84f13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.