PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Influence of Geometrical Parameters of the Lock of the Blade-Disc Joint on Stress in the FEA and DIC Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an assessment of strength properties of the existing blade-disc dovetail joint was presented, taking the parametric optimization of its geometry. A sensitivity of the analysis was carried out to determine the relationship between the selected geometric parameters and strength properties of the structure questioned. The results from experiments and computer simulations were compared. In addition, the fatigue life of the structure was analyzed for different materials and using the change of speed ranges and parameterization of geometry.
Twórcy
  • Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
  • Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
Bibliografia
  • 1. Anandavel K., Prakash R. V. Effect of three-dimensional loading on macroscopic fretting aspects of an aero-engine blade-disc dovetail interface. Tribology International, 44, 2011, 1544-1555.
  • 2. Argyris J.H. Energy theorems and structural analysis: A generalized discourse with applications on energy principles of structural analysis including the effects of temperature and non-linear stressstrain relations. Aircraft Engineering and Aerospace Technology, 26(10), 1954, p. 347.
  • 3. Bąk R., Burczyński T., Strength of materials with elements of a computer approach, Warsaw 2009, 378-382. (in Polish)
  • 4. Bednarz A., et al. Influence of initial stress after impact of hard object for fatigue life of the compressor blade. TTS Technika Transportu Szynowego, 12, 2016, 52-55. (in Polish)
  • 5. Bodnar A., Strength of materials. Cracow 2004. (in Polish)
  • 6. Chu T.C., et al. Application of digital-image-correlation techniques to experimental mechanics. Experimental Mechanics, 25(3), 1985, 232-244.
  • 7. Dębski M., Dębski D., Selected issues of fatigue strength of aircraft structures, Warsaw 2014, 318-325. (in Polish)
  • 8. Gasiak G., Pawliczek R. Fatigue strength of a structural steel under asymmetric loading. Zeszyty Naukowe. Mechanika / Politechnika Opolska, 2002, 25-41. (in Polish)
  • 9. Kachel S. The method of multi-criteria design of the airplane body including the mission. Warsaw 2011. (in Polish)
  • 10. Kermanpur A., et al. Failure characterization of Ti6Al4V gas turbine compressor blades. WIT Transactions on Engineering Sciences, 57, 2007, 383-392.
  • 11. Kheto M.K., et al. Fretting fatigue analysis in dovetail joint of compressor through numerical simulation. SASTECH, 8, 2009, 71-76.
  • 12. Kłysz S. Fatigue life analysis of construction elements used in aviation. Technical Sciences, 8, 2005, 181-192.
  • 13. Kocańda S., Szala J. Basics of fatigue calculations, Warsaw 1997. (in Polish)
  • 14. Kozakiewicz A., Grzejszczak O. Influence of selected geometric parameters on strength properties of compressor’s jet engine blade joint. Mechanik 07, 2016, 740-741. (in Polish)
  • 15. Lourenco N.J., Graca M.L.A, et al., Fatigue failure of a compressor blade, Engineering Failure Analysis 15, 2008, 1150–1154.
  • 16. Łagosz M., Szczeciński S. Construction of aircraft engines. Selected issues of strength and dynamics of the structure. Warsaw 1985. (in Polish)
  • 17. Merquid S. A., et al. Theoretical and experimental studies of structural integrity of dovetail joints in aeroengine discs. Journal of Materials Processing Technology, 56, 1996, 668-677.
  • 18. Moaveni S., Finite element analysis. Theory and application with ANSYS, New Jersey 1999, 440-447.
  • 19. Nakhodchi S., et al. Fatigue life prediction in the damaged and un-damaged compressor blades. Engineering Solid Mechanics, 2013, 43-50.
  • 20. Nikishkov G.P., Introduction to the finite element method. Japan 2004, 16-17.
  • 21. Nowotarski I., Static and dynamic calculations of aircraft turbine engines by finite element method, Warsaw 2001.
  • 22. Papanikos P. Three-dimensional nonlinear finite element analysis of dovetail joints in aeroengine discs. Finite Elements in Analysis and Design, 29, 1998, 173-186.
  • 23. Prevéy P.S., Jayaraman N. et al. Mitigation of fretting fatigue damage in blade and disk pressure faces with low plasticity burnishing, ASME Lambda Technologies, USA Ohio 2007.
  • 24. Saxena A., Sahay B. Computer aided engineering design. Springer 2005, 309-310.
  • 25. Stadnicki J. Theory and practice of solving optimization problems with examples of technical applications. Warsaw 2006. (in Polish)
  • 26. Szczeciński S., et al. Aircraft turbine engines, construction operation – diagnostics. Warsaw 2010. (in Polish)
  • 27. Trelka, M., et al. Selected problems of RD-33 engine reliability in operation. Combustion engines, 165(2), 2017, 33-40.
  • 28. Turner M.J. Clough R.C., Martin H.C., Topp L.J. Stiffness and deflection analysis. Journal of Aero Sciences, 23, 1956, 805-823.
  • 29. Witoś M. Increasing the durability of turbine engines through active diagnostics and control. Warsaw 2010. (in Polish)
  • 30. Zienkiewicz O.C. The finite element method in engineering science. Warsaw, 1972.
  • 31. ANSYS v.18 documentation.
  • 32. CFM Flight Ops Support B737. Conference Flight Operations Support. 2005.
  • 33. Metallic materials and elements for aerospace vehicle structures, MIL-HDBK-5H, 1998.
  • 34. www.avherald.com
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-372e80ac-714d-4ea6-b0c0-4a24aad224f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.