Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The tourism industry is concentrated within the boundaries of the Subcarpathia Forestry District of Ukraine. These are mostly resort complexes with recreation houses, hotels and restaurants. Since the issue of solid household waste processing has not been resolved in Ukraine, landfills are emerging near recreation facilities. Undoubtedly, such a situation contradicts the improvement processes, because landfills are objects of detonation of dangerous substances and compounds infiltrating into all components of the environment due to geochemical flows. The object of the conducted research was determination of chemical elements in the newly formed substrates on the surface of the following landfills, i.e. Bronytskyi, Stryiskyi, Boryslavskyi, which are located not far from the border with Poland within the tourist and recreational complex of the Lviv region of Ukraine, geographically belonging to the Subcarpathia Forestry District of Ukraine. It was established that the chemical elements of the toxic group and biogenic elements accumulate. The traces of individual elements were also determined. The Bronytskyi landfill is the most polluted with the following chemical elements: Pb (3.56–4.06 mg/kg), Zn (2.84–3.67 mg/kg), Gd (0.021–0.033 mg/kg), P (457.3–609.7 mg/kg), K (9.7–14.6 mg/kg), Ca (174.7–237.7 mg/kg), Ga (3.58–5,98 mg/kg), La (1.09–1.24 mg/kg), Y (0.013–0.014 mg/kg), Cd (0.15–0.176 mg/kg), Sn (0.013–0.018 mg/kg), Nd (0.029–0.046 mg/kg), Eu (0.022–0.036 mg/kg) and Th (0.05–0.078 mg/kg). The site of the Boryslav landfill is most polluted in the western side - Fe (16.06–19.72 mg/kg), Cu (0.37–0.43 mg/kg), Gd (0.003 mg/kg), Si (43–58.2 mg/kg), P (782.4–995.5 mg/kg), Ca (88.6–104.7 mg/kg), Mn (1.7–2.7 mg/kg), Sc (0.009 mg/kg), Cr (1.069–1.255 mg/kg), Y (0.015–0.016 mg/kg), Nd (0.016–0.018 mg/kg). In the eastern side of the Stryi landfill the presence of the following elements is most evident - Fe (18.98–27.97 mg/kg), Ni (0.09–0.21 mg/kg), Zn (0.14–0.19 mg/kg), Pb (0.05–0.1 mg/kg), Al (1.6–2.0 mg/kg), P (718.1–652.5 mg/kg), Mn (2.5–3.5 mg/kg), Ga (0.01 mg/kg), La (0.02–0.04 mg/kg), Cr (0.009–0.013 mg/kg), Ge (0.214–0.551 mg/ kg), Cd (0.014–0.02 mg/kg), Nd (0.017–0.037 mg/kg), Th (0.009–0.016 mg/kg). Such a detailed chemical analysis for the presented research objects was carried out for the first time. Determining of the chemical content of the newly formed substrate is important from the point of view of environmental protection solutions implementation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
233--253
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Institute of Civil Protection, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
autor
- Institute of Civil Protection, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
autor
- Institute of Civil Protection, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
autor
- Institute of Civil Protection, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
autor
- Institute of Civil Protection, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
Bibliografia
- 1. Bosak P., Popovych V., Stepova K., Dudyn R. 2020. Environmental impact and toxicological properties of mine dumps of the Lviv-Volyn coal basin. News of the National academy of sciences of the Republic of Kazakhstan. Series of Geology and Technical, 2(440), 48–54. https://doi.org/10.32014/2020.2518-170X.30
- 2. Popovych, V., Stepova, K., Voloshchyshyn, A., Bosak, P. 2021. Physico-chemical properties of soils in Lviv Volyn coal basin area. E3S Web of Conferences, 105, 02002. https://doi.org/10.1051/e3sconf/201910502002
- 3. Petlovanyi M.V., Zubko S.A., Popovych V.V., Sai K.S. 2020. Physicochemical mechanism of structure formation and strengthening in the backfill massif when filling underground cavities. Voprosy khimii i khimicheskoi tekhnologii, 6, 142–150. https://doi.org/10.32434/0321-4095-2020-133-6-142-150
- 4. Karabyn V., Popovych V., Shainoha I., Lazaruk Y. 2019. Long-term monitoring of oil contamination of profile-differen-tiated soils on the site of influence of oil-and-gas wells in the central part of the Boryslav-Pokuttya oil-and-gas bearing area. Petroleum and Coal, 61(1), 81–89.
- 5. Zeng D., Chen G., Zhou P., Xu H., Qiong A., Duo B., Lu X., Wang Z., Han Z. 2021. Factors influencing groundwater contamination near municipal solid waste landfill sites in the Qinghai-Tibetan plateau. Ecotoxicology and Environmental Safety, 211, 111913. https://doi.org/10.1016/j.ecoenv.2021.111913
- 6. Yaoa J., Konga Q., Qiua Z., Chena L., Shenc D. 2019. Patterns of heavy metal immobilization by MSW during the landfill process. Chemical Engineering Journal, 375, 122060. https://doi.org/10.1016/j.cej.2019.122060
- 7. Xu S., Zeeshan M., Qasim M., Zhang T., Wang R., Li C., Ge S. 2021. Diversity, abundance and expression of the antibiotic resistance genes in a Chinese landfill: Effect of deposit age. Journal of Hazardous Materials, 417, 126027. https://doi.org/10.1016/j.jhazmat.2021.126027
- 8. Wang Q., Ko J.-H., Liu F., Xu Q. 2021. Leaching characteristics of heavy metals in MSW and bottom ash co-disposal landfills. Journal of Hazardous Materials, 416, 126042. https://doi.org/10.1016/j.jhazmat.2021.126042
- 9. Wang P., Wu D., You X., Su Y., Xie B. 2021. Antibiotic and metal resistance genes are closely linked with nitrogen-processing functions in municipal solid waste landfills Journal of Hazardous Materials, 403, 123689. https://doi.org/10.1016/j.jhazmat.2020.123689
- 10. Wang P., Wu D., You X., Li W., Xie B. 2019. Distribution of antibiotics, metals and antibiotic resistance genes during landfilling process in major municipal solid waste landfills. Environmental Pollution, 255, 113222. https://doi.org/10.1016/j.envpol.2019.113222
- 11. Suna D., Honga X., Cuic Z., Dua Y., Huid K., Zhua E., Wub K., Hui K. 2019. Treatment of landfill leachate using magnetically attracted zero-valent iron powder electrode in an electric field. Journal of Hazardous Materials, 388, 121768. https://doi.org/10.1016/j.jhazmat.2019.121768
- 12. Bilardi S., Calabrò P., Greco R., Moraci N. 2018. Selective removal of heavy metals from landfill leachate by reactive granular filters. Science of the Total Environment, 644, 335–341. https://doi.org/10.1016/j.scitotenv.2018.06.353
- 13. Souza W., Rodrigues W., Filho M., Alves J., Oliveira T. 2018. Heavy metals uptake on Malpighia emarginata D.C. seed fiber microparticles: Physicochemical characterization, modeling and application in landfill leachate Waste Management, 78, 356–365. https://doi.org/10.1016/j.wasman.2018.06.004
- 14. Ray S., Mishra A., Kalamdhad A. 2021. Evaluation of equilibrium, kinetic and hydraulic characteristics of Indian bentonites in presence of heavy metal for landfill application. Journal of Cleaner Production, 317, 128396. https://doi.org/10.1016/j.jclepro.2021.128396
- 15. Obiri-Nyarko F., Duah A., Karikari A., Agyekum W., Manu E., Tagoe R. 2021. Assessment of heavy metal contamination in soils at the Kpone landfill site, Ghana:Implication for ecological and health risk assessment Chemosphere, 282, 131007. https://doi.org/10.1016/j.chemosphere.2021.131007
- 16. Liu S., Xi B., Qiu Z., He X., Zhang H., Dang Q., Zhao X., Li D. 2019. Succession and diversity of microbial communities in landfills with depths and ages and its association with dissolved organic matter and heavy metals Science of the Total Environment, 65(1), 909–916. https://doi.org/10.1016/j.scitotenv.2018.09.267
- 17. Li R., Li L., Zhang Z., Chen G., Tang Y. 2021. Limiting factors of heavy metals removal during anaerobic biological pretreatment of municipal solid waste landfill leachate Hazardous Materials, 416, 126081. https://doi.org/10.1016/j.jhazmat.2021.126081
- 18. Hassana A., Pariatambya A., Ossaia I., Hamid F. 2020. Bioaugmentation assisted mycoremediation of heavy metal and metalloid landfill contaminated soil using consortia of filamentous fungi Biochemical Engineering Journal, 157, 107550. https://doi.org/10.1016/j.bej.2020.107550
- 19. Francisca F.M., Glatstein D.A. 2019. Environmental application of basic oxygen furnace slag for the removal of heavy metals from leachates, Journal of Hazardous Materials, 384, 121294. https://doi.org/10.1016/j.jhazmat.2019.121294
- 20. Esfahani A., Zhai L., Sadmani A. 2021. Removing heavy metals from landfill leachate using electrospun polyelectrolyte fiber mat-laminated ultrafiltration membrane. Journal of Environmental Chemical Engineering, 9(4), 105355. https://doi.org/10.1016/j.jece.2021.105355
- 21. Deng M., Kuo D., Wu Q., Zhang Y., Liu X., Liu S., Hu X., Mai B., Liu Z., Zhang H. 2018. Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China. Environmental Pollution, 236, 137–145. https://doi.org/10.1016/j.envpol.2018.01.042
- 22. Argun M., Akkuş M., Ateş H. 2020. Investigation of micropollutants removal from landfill leachate in a full-scale advanced treatment plant in Istanbul city, Turkey. Science of the Total Environment, 748, 141423. https://doi.org/10.1016/j.scitotenv.2020.141423
- 23. Adelopo A.O., Haris P.I., Alo B.I., Huddersman K., Jenkins R.O. 2018. Multivariate analysis of the effects of age, particle size and landfill depth on heavy metals pollution content of closed and active landfill precursors Waste Management, 78, 227–237. https://doi.org/10.1016/j.wasman.2018.05.040
- 24. Abiriga D., Vestgarden S., Klempe H. 2020. Groundwater contamination from a municipal landfill: Effect of age, landfill closure, and season on groundwater chemistry Science of the Total Environment, 737, 140307. https://doi.org/10.1016/j.scitotenv.2020.140307
- 25. Calabrò P.S., Gentili E., Meoni C., Orsi S., Komilis D. 2018. Effect of the recirculation of a reverse osmosis concentrate on leachate generation: A case study in an Italian landfill. Waste Management, 76, 643–651. https://doi.org/10.1016/j.wasman.2018.03.007
- 26. Alam R., Ahmed Z., Howladar M.F. 2019. Evaluation of heavy metal contamination in water, soil and plant around the open landfill site Mogla Bazar in Sylhet, Bangladesh, Groundwater for Sustainable Development, 10, 100311. https://doi.org/10.1016/j.gsd.2019.100311
- 27. Bakhshoodeha R., Alavib N., Oldhama C., Santosd R., Babaeie A., J. Vymazalg, Paydary P. 2020. Constructed wetlands for landfill leachate treatment: A review. Ecological Engineering, 146, 105725. https://doi.org/10.1016/j.ecoleng.2020.105725
- 28. Hussein M., Yoneda K., Mohd-Zaki Z., Amir A., Othman N. 2019. Heavy Metals in Leachate, Impacted Soils and Natural Soils of Different Landfills in Malaysia: An Alarming Threat, Chemosphere, 267, 128874. https://doi.org/ 10.1016/j.chemosphere.2020.128874
- 29. Order of the Ministry of Health dated July 14, 2020 No. 1595 Registered with the Ministry of Justice of Ukraine on July 31, 722/35005 “On the approval of hygienic regulations on the allowable content of chemical substances in soil”. [in Ukrainian]
- 30. Gensyruk S., Shevchenko S., Bondar V., Shelyag-Sosonko Yu., Koval Ya., Zaitsev V., Kravchuk Yu. Complex forestry zoning of Ukraine and Moldavia. 1981. Naukova Dumka. Edited by Gensyruk. [in Russian]
- 31. Sampling of soil samples for determination of contamination with industrial toxicants (heavy metals) // Program of the State Hydrometeorological 3+Service of the Ministry of Mines and Resources of Ukraine, 2004. [in Ukrainian]
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-372aae8b-441e-49cd-9bec-1a915ee778e6