Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the correlation among the impact strength of Polylactic acid (PLA) material as well as many 3D printing parameters, including layer height, infill density, extrusion temperature, and print speed, using Fused Deposition Modelling (FDM) in Additive Manufacturing (AM). By using well-planned trials, the ASTM D256 standard assessed the impact strength of samples. Impact strength was optimized using six distinct techniques: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing (SA), Teaching Learning Based Optimization (TLBO), and Cohort Intelligence (CI). These approaches are reliable since they consistently delivered similar impact strength values after several iterations. The best algorithms, according to the study, were TLBO and JAYA, which produced a maximum impact strength of 4.08 kJ/m2. The algorithms' effectiveness was validated by validation studies, which showed little error and near matches between the expected and actual impact strength values. The advantages of employing these methods to increase the impact strength of PLA material for 3D printing are illustrated in the present research, which provides helpful insights on how to improve FDM procedures.
Wydawca
Czasopismo
Rocznik
Strony
5--20
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India
autor
- Department of Mechanical Engineering, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India
autor
- Department of Mechanical Engineering, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India
autor
- Department of Mechanical Engineering, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India
autor
- Department of Mechanical Engineering, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India
autor
- Department of Instrumentation Engineering, D Y Patil Institute of Technology, Savitribai Phule Pune University, Pune 411018, India
autor
- Department of Mechanical Engineering, Karpagam Institute of Technology, Coimbatore, Tamil Nadu 641105, India
autor
- School of Engineering, Faculty of Technology, University of Sunderland, Sunderland SR60DD, United Kingdom
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, 140401, Punjab, India
autor
- Department of Mechanical Engineering, Karpagam Institute of Technology, Coimbatore, Tamil Nadu 641105, India
Bibliografia
- 1. Atakok, G., Kam, M. and Koc, H.B., 2022. Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation. Journal of Materials Research and Technology, 18, pp.1542-1554. https://doi.org/10.1016/j.jmrt.2022.03.013
- 2. Sabik, A., Rucka, M., Andrzejewska, A. and Wojtczak, E., 2022. Tensile failure study of 3D printed PLA using DIC technique and FEM analysis. Mechanics of Materials, 175, p.104506. https://doi.org/10.1016/j.mechmat.2022.104506
- 3. Cabreira, V. and Santana, R.M.C., 2020. Effect of infill pattern in Fused Filament Fabrication (FFF) 3D Printing on materials performance. Matéria (Rio de Janeiro), 25. https://doi.org/10.1590/S1517-707620200003.1126
- 4. Durga Prasad Reddy, J., Mishra, D. and Chetty, N., 2020. Strength and Hardness of 3D printed poly lactic acid and carbon fiber poly lactic acid thermoplastics. In Advances in Lightweight Materials and Structures: Select Proceedings of ICALMS 2020 (pp. 625-634). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-7827-4_64
- 5. Kamaal, M., Anas, M., Rastogi, H., Bhardwaj, N. and Rahaman, A., 2021. Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite. Progress in Additive Manufacturing, 6, pp.63-69. https://doi.org/10.1007/s40964-020-00145-3
- 6. Solouki, A., Aliha, M.R.M. and Makui, A., 2023. A Methodology for Optimizing Impact Strength, Dimensional Accuracy and Costs of Manufacturing with Three-Dimensional Printing of Polylactic Acid. Arabian Journal for Science and Engineering, pp.1-25. https://doi.org/10.1007/s13369-023-08422-3
- 7. Atakok, G., Kam, M. and Koc, H.B., 2022. Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation. Journal of Materials Research and Technology, 18, pp.1542-1554. https://doi.org/10.1016/j.jmrt.2022.03.013
- 8. Hsueh, M.H., Lai, C.J., Chung, C.F., Wang, S.H., Huang, W.C., Pan, C.Y., Zeng, Y.S. and Hsieh, C.H., 2021. Effect of printing parameters on the tensile properties of 3D-printed polylactic acid (PLA) based on fused deposition modeling. Polymers, 13(14), p.2387. https://doi.org/10.3390/polym13142387
- 9. Rajpurohit, S.R. and Dave, H.K., 2021. Impact strength of 3D printed PLA using open source FFF-based 3D printer. Progress in Additive Manufacturing, 6(1), pp.119-131. https://doi.org/10.1007/s40964-020-00150-6
- 10. Almansoori, K. and Pervaiz, S., 2023. Effect of layer height, print speed and cell geometry on mechanical properties of marble PLA based 3D printed parts. Smart Materials in Manufacturing, 1, p.100023. https://doi.org/10.1016/j.smmf.2023.100023
- 11. Bardiya, S., Jerald, J. and Satheeshkumar, V., 2021. Effect of process parameters on the impact strength of fused filament fabricated (FFF) polylactic acid (PLA) parts. Materials Today: Proceedings, 41, pp.1103-1106. https://doi.org/10.1016/j.matpr.2020.08.066
- 12. Khan, I., Tariq, M., Abas, M., Shakeel, M., Hira, F., Al Rashid, A. and Koç, M., 2023. Parametric investigation and optimisation of mechanical properties of thick tri-material based composite of PLA-PETG-ABS 3D-printed using fused filament fabrication. Composites Part C: Open Access, 12, p.100392. https://doi.org/10.1016/j.jcomc.2023.100392
- 13. Prajapati, A.R., Dave, H.K. and Raval, H.K., 2021. Effect of fiber volume fraction on the impact strength of fiber reinforced polymer composites made by FDM process. Materials Today: Proceedings, 44, pp.2102-2106. https://doi.org/10.1016/j.matpr.2020.12.262
- 14. Rebenaque, A.G. and González-Requena, I., 2019. Study of bending test of specimens obtained through FDM processes of additive manufacturing. Procedia Manufacturing, 41, pp.859-866. https://doi.org/10.1016/j.promfg.2019.10.008
- 15. Mazen, A., McClanahan, B. and Weaver, J.M., 2022. Factors affecting ultimate tensile strength and impact toughness of 3D printed parts using fractional factorial design. The International Journal of Advanced Manufacturing Technology, pp.1-13. https://doi.org/10.1007/s00170-021-08433-0
- 16. Rajpurohit, S.R. and Dave, H.K., 2019. Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. The International Journal of Advanced Manufacturing Technology, 101, pp.1525-1536. https://doi.org/10.1007/s00170-018-3047-x
- 17. Fayazbakhsh, K., Movahedi, M. and Kalman, J., 2019. The impact of defects on tensile properties of 3D printed parts manufactured by fused filament fabrication. Materials Today Communications, 18, pp.140-148. https://doi.org/10.1016/j.mtcomm.2018.12.003
- 18. Enemuoh, E.U. and Asante-Okyere, S., 2023. Impact of feature selection on neural network prediction of fused deposition modelling (FDM) print part properties. International Journal on Interactive Design and Manufacturing (IJIDeM), pp.1-15. https://doi.org/10.1007/s12008-023-01598-w
- 19. Kumar, M.S., Javidrad, H.R., Shanmugam, R., Ramoni, M., Adediran, A.A. and Pruncu, C.I., 2021. Impact of print orientation on morphological and mechanical properties of L-PBF based AlSi7Mg parts for aerospace applications. Silicon, pp.1-15. https://doi.org/10.1007/s12633-021-01474-w
- 20. Kafshgar, A.R., Rostami, S., Aliha, M.R.M. and Berto, F., 2021. Optimization of properties for 3d printed pla material using taguchi, anova and multi-objective methodologies. Procedia Structural Integrity, 34, pp.71-77. https://doi.org/10.1016/j.prostr.2021.12.011
- 21. Shahar, F.S., Sultan, M.T.H., Safri, S.N.A., Jawaid, M., Talib, A.R.A., Basri, A.A. and Shah, A.U.M., 2022. Fatigue and impact properties of 3D printed PLA reinforced with kenaf particles. Journal of materials research and technology, 16, pp.461-470. https://doi.org/10.1016/j.jmrt.2021.12.023
- 22. Halim, A.H., Ismail, I. and Das, S., 2021. Performance assessment of the metaheuristic optimization algorithms: an exhaustive review. Artificial Intelligence Review, 54(3), pp.2323-2409. https://doi.org/10.1007/s10462-020-09906-6
- 23. Jatti, V.S., Sapre, M.S., Jatti, A.V., Khedkar, N.K. and Jatti, V.S., 2022. Mechanical properties of 3D-printed components using fused deposition modeling: optimization using the desirability approach and machine learning regressor. Applied System Innovation, 5(6), p.112. https://doi.org/10.3390/asi5060112
- 24. Singh, J., Goyal, K.K., Kumar, R. and Gupta, V., 2022. Development of artificial intelligence‐based neural network prediction model for responses of additive manufactured polylactic acid parts. Polymer Composites, 43(8), pp.5623-5639. https://doi.org/10.1002/pc.26876
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3729b53b-9d43-424b-bc28-006d6ca6dde0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.