PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Improved petrographic-coded model and its evaluation to determine a thermal conductivity log

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal conductivity is one of the crucial properties for thermal modelling as well as tunnelling or geological modelling. Available data are mainly from laboratory measurements. Therefore, additional ways, such as correlations with other properties to derive the petrophysical parameter, will be an advantage. The research presented here continues and improves the petrographic-coded model concept with an increased set of data, including a variety of lithologies, and, furthermore, the correlations, including the electrical resistivity. Input parameters are no longer taken from the literature, but are derived directly from measurements. In addition, the results are compared with other published approaches. Results show good correlations with measured data. The comparison with the multi-linear regression method shows acceptable outcome, in contrast to a geometric-mean method, where data scatter. In summary, it can be said that the improved model delivers for both correlation (compressional wave velocity and electrical resistivity with thermal conductivity) positive results.
Czasopismo
Rocznik
Strony
103--118
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Department of Applied Geophysics, Montanuniversitaet Leoben, Leoben, Austria
autor
  • Department of Applied Geophysics, Montanuniversitaet Leoben, Leoben, Austria
Bibliografia
  • 1. Abdulagatova Z, Abdulagatov IM, Emirov VN (2009) Effect of temperature and pressure on the thermal conductivity of sandstone. Int J Rock Mech Min Sci 46:1055–1071. doi:10.1016/j.ijrmms.2009.04.011
  • 2. Archie G (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metal Eng 146:54–62
  • 3. Barry-Macaulay D, Bouazza A, Singh RM, Wang B, Ranjith PG (2013) Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Eng Geol 164:131–138. doi:10.1016/j.enggeo.2013.06.014
  • 4. Berryman JG (1995) Mixture theories for rock properties. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants. Am Geophys Union Washington, DC. 205–228, doi:10.1029/RF003p0205
  • 5. Budiansky B, O’Connell RJ (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12:81–97
  • 6. Fuchs S (2013) Well-log based determination of rock thermal conductivity in the North German Basin, PhD thesis. University Potsdam, Germany
  • 7. Fuchs S, Balling N, Foerster A (2015) Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs. Geophys J Int 203:1977–2000. doi:10.1093/gji/ggv403
  • 8. Gąsior I, Przelaskowska A (2014) Estimating thermal conductivity from core and well log data. Acta Geophys 62(4):785–801. doi:10.2478/s11600-014-0204-y
  • 9. Gegenhuber N, Schön J (2012) New approaches for the relationship between compressional wave velocity and thermal conductivity. J Appl Geophys 76:50–55. doi:10.1016/j.jappgeo.2011.10.005
  • 10. Gegenhuber N, Steiner-Luckabauer C (2012) Vp/Vs automatic picking of ultrasonic measurements and their correlation of petrographic coded carbonates from Austria. In: 74th EAGE conference and exhibition, Copenhagen, Denmark
  • 11. Hartmann A, Rath V, Clauser C (2005) Thermal conductivity from core and well log data. Int J Rock Mech Min Sci 42(7–8):1042–1055. doi:10.1016/j.ijrmms.2005.05.015
  • 12. Kukkonen IT, Peltioniemi S (1998) Relationship between thermal and other petrophysical properties of rocks of Finland. Phys Chem Earth 23:341–349
  • 13. Lichtenecker K (1924) Der elektrische Leitunswiderstand künstlicher und natürlicher Aggregate. Physikal Zeitsch 25(8):169–233
  • 14. Oezkahraman HT, Selver R, Işık EC (2004) Determination of the thermal conductivity of rock from P-wave velocity. Int J Rock Mech Min Sci 41(4):703–708. doi:10.4236/gm.2013.34018
  • 15. Popov Y, Tertchnyi V, Romushkevich R, Korobkov D, Pohl J (2003) Interrelations between thermal conductivity and other physical properties of rocks: experimental data. Pure Appl Geophys 160:1137–1161
  • 16. Schoen JH (2011) Physical properties of rocks: a workbook, handbook of petroleum exploration and production, vol 8. Elsevier, Amsterdam
  • 17. Schoen JH (2015) Physical properties of rocks: fundamentals and principles of petrophysics, developments in petroleum science, vol 65. Elsevier, Amsterdam
  • 18. Sundberg J, Back P-E, Ericsson LO, Wrafter J (2009) Estimation of thermal conductivity and its spatial variability in igneous rocks from in situ density logging. Int J Rock Mech Min Sci 46(6):1023–1028. doi:10.1016/j.ijrmms.2009.01.010
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3727b82c-e75b-411e-b504-2fc67c57124f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.