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ABSTRACT 

A semi-Markov stochastic process is used for solving in a reliability problem in the paper. The problem 
concerns of two different component cold standby system and a switch. To obtain the reliability 
characteristic and parameters of the system we construct so called an embedded semi-Markov 
process in the process describing operation process of the system. In the model the conditional 
time to failure of the system is represented by a random variable denoting the first passage time 
from the given state to the specified subset of states. We apply theorems of the Semi-Markov 
processes theory concerning the conditional reliability functions to calculate the reliability function 
and mean time to failure of the system. Often an exact reliability function of the system by using 
Laplace transform is difficult to calculate, frequently impossible. The semi-Markov processes per-
turbation theory, allows to obtain an approximate reliability function of the system in that case. 
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INTRODUCTION 

A model presented here is an extension of the models that have been con-

sidered by Barlow and Proshan [1], Brodi and Pogosian [3], Koroluk and Turbin [8] 

and Grabski [5, 6]. This model was presented in conference of ASMDA 2017 in London. 

Abstract of the presentation is located in Book of Abstracts [2]. 

We assume that the system consists of one operating unit A, the stand-by 

unit B that may have different probability distributions of the lifetimes. We suppose 

that there is an unreliable switch in the system which is used at the moment of  
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the working unit failure. A discrete state space and continuous time stochastic pro-

cess describes work of the system in reliability aspect. To obtain the reliability 

characteristics and parameters of the system we construct so called an embedded 

semi-Markov process in this process by defining the renewal kernel of that one. Con-

struction of the renewal kernel is an important first step in solving the problem. 

This method was presented in [3, 5, 6]. The conditional time to failure of the system 

is described by a random variable that means the first passage time from the given 

state to the specified subset of states. To obtain the conditional reliability functions 

of the system we use appropriate system of integral equations. Passing to the La-

place transforms we get system of linear equations for transforms. The solution are 

Laplace transforms of the conditional reliability functions of the system. Applying 

property of Laplace transform we compute the mean time to failure of the system. 

Very often calculating an exact reliability function of the system by using Laplace 

transform is a complicated matter but there is a possibility to apply the theorem of 

the theory of the Semi-Markov processes perturbation [4, 7, 8] to obtain an approxi-

mate reliability function of the system. We use Pavlov and Ushakov [9] concept of 

the perturbed SM process, which is presented in [4] by Gertsbakh. 

DESCRIPTION AND ASSUMPTIONS 

We assume that the system consists of one operating unit 𝐴, the stand-by 

unit 𝐵 and a switch. We assume that a lifetime of a basic operating unit is repre-

sented by a random variable 휁𝐴, with distribution given by a probability density 

function (PDF) 𝑓𝐴(𝑥), 𝑥 ≥ 0. When the operating unit fails, the spare 𝐵 is immedi-

ately put in motion by the switch. The failed unit is renewed by a single repair facility. 

A renewal time of a unit 𝐴 is a random variable 𝛾𝐴 having distribution given by  

a cumulative distribution function (CDF) 𝐻𝐴(𝑥) = 𝑃(𝛾𝐴 ≤ 𝑥), 𝑥 ≥ 0. Lifetime of the unit 

𝐵 is a random variable 휁𝐵, with PDF 𝑓𝐵(𝑥), 𝑥 ≥ 0. When unit 𝐵 fails, the unit 𝐴 im-

mediately starts to work by the switch (if it is ‘up’) and unit 𝐵 is repaired. A renewal 

time of the unit 𝐵 is a random variable 𝛾𝐵 having distribution given by the CDF 

𝐻𝐵(𝑥) = 𝑃(𝛾𝐵 ≤ 𝑥), 𝑥 ≥ 0. 

Let 𝑈 be a random variable having a binary distribution  

𝑏(𝑘) = 𝑃(𝑈 = 𝑘) = 𝑎𝑘(1 − 𝑎)1−𝑘, 𝑘 = 0,1, 0 < 𝑎 < 1, 

where 𝑈 = 0, if a switch is failed at the moment of the operating unit failure, and 

𝑈 = 1, if the switch work at that moment. 



Semi-Markov reliability model of two different units cold standby system 

4 (211) 2017  47 

The failure of the system takes place when the operating unit fails and the com-

ponent that has failed sooner is not still ready to work or when both the operating 

unit and the switch have failed. 

After failure the entire system is renewed. A renewal time of whole system is 

random variable with distribution given by a cumulative distribution function (CDF) 

𝐻(𝑥) = 𝑃(γ ≤ 𝑥), 𝑥 ≥ 0. 

Moreover we assume that all random variables, mentioned above are mu-

tually independent. 

CONSTRUCTION OF SEMI-MARKOV RELIABILITY MODEL 

To describe the operation process of the system in the aspect of reliability, 

we have to determine the states, the renewal kernel and initial distribution. We intro-

duce the following states: 

0 — failure of the whole system because of the switch failure;  

1 — failure of the whole system because of the unit 𝐵 failure during repair period 

of the unit A; 

2 — failure of the whole system because of the unit 𝐴 failure during repair period 

of the unit B; 

3 — repair of the unit A, unit B is working; 

4 — repair of the unit B, unit A is working; 

5 — both unit A and unit B are ‘up’ and unit A is working; 

6 — both unit A and unit B are ‘up’ and unit B is working. 

Let 0 = 𝜏0
∗, 𝜏1

∗, 𝜏2
∗, … denote the instants of the states changes and {𝑌(𝑡): 𝑡 ≥ 0}  

be a random process with the state space 𝑆 = {0, 1, 2, 3, 4, 5, 6}, which keeps con-

stant values on the half-intervals [𝜏𝑛
∗ , 𝜏𝑛+1

∗ ), 𝑛 = 0,1,… and it is right-continuous. 

This process is not semi-Markov, because a memory-less property is not satisfied 

for all instants of the state changes of it.  

We construct a new random process in a following way. Let 0 = 𝜏0 and 

𝜏1, 𝜏2, . .. denote instants of the unit failures or instants of the whole system failure.  

The random process {𝑋(𝑡): 𝑡 ≥ 0} determining following way 

𝑋(𝑡) = 𝑌(𝜏𝑛) for 𝑡 ∈ [𝜏𝑛, 𝜏𝑛+1), 𝑛 = 0, 1, 2,… 
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is the semi-Markov process. This process is called an embedded semi-Markov process in 

the stochastic process {𝑌(𝑡): 𝑡 ≥ 0}. The Possible states changes of the process 

{𝑋(𝑡): 𝑡 ≥ 0} are shown in figure 1. 

 

 
Fig. 1. Possible states changes of the process  {𝑋(𝑡):  𝑡 ≥ 0} [own study] 

 
To define semi-Markov process as a model we have to determine its initial 

distribution and all elements of its kernel. Recall that the semi-Markov kernel is the 

matrix of transition probabilities of the Markov renewal process  

 𝑄(𝑡) = [𝑄𝑖𝑗(𝑡): 𝑖, 𝑗 ∈ 𝑆],  (1)  

where 

 𝑄𝑖𝑗(𝑡) = 𝑃(𝜏𝑛+1 − 𝜏𝑛 ≤ 𝑡, 𝑋(𝜏𝑛+1) = 𝑗 | 𝑋(𝜏𝑛) = 𝑖), 𝑡 ≥ 0.  (2)  

Let’s remind that the sequence {𝑋(𝜏𝑛): 𝑛 = 0,1,… } is a homogeneous Markov 

chain with transition probabilities 

 𝑝𝑖𝑗 = 𝑃(𝑋(𝜏𝑛+1) = 𝑗 | 𝑋(𝜏𝑛) = 𝑖) = lim
𝑡→∞

𝑄𝑖𝑗(𝑡).  (3) 

The function  

 𝐺𝑖(𝑡) = 𝑃(𝑇𝑖 ≤ 𝑡) = 𝑃(𝜏𝑛+1 − 𝜏𝑛  ≤ 𝑡 | 𝑋(𝜏𝑛) = 𝑖) = ∑ 𝑄𝑖𝑗(𝑡)𝑗∈𝑆   (4)  

is the CDF distribution of so called waiting time 𝑇𝑖  , denoting the time spent in state 

𝑖 when the successor state is unknown, the function 

 𝐹𝑖𝑗(𝑡) = 𝑃(𝜏𝑛+1 − 𝜏𝑛  ≤ 𝑡 | 𝑋(𝜏𝑛) = 𝑖, 𝑋(𝜏𝑛+1) = 𝑗) =
𝑄𝑖𝑗(𝑡)

𝑝𝑖𝑗
 (5)  

is the CDF of a random variable 𝑇𝑖𝑗 that is called a holding time of a state 𝑖, if the next 

state will be 𝑗. It is easy to see that  

 𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝐹𝑖𝑗(𝑡).  (6) 
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(8) 

(9) 

The semi-Markov kernel corresponding to the graph that is shown in figure 1 

takes the form  

 𝑸(𝑡) =

[
 
 
 
 
 
 
 
 
0 0 0 0 0 𝑄05(𝑡) 𝑄06(𝑡)

0 0 0 0 0 𝑄15(𝑡) 𝑄16(𝑡)

0 0 0 0 0 𝑄25(𝑡) 𝑄26(𝑡)

𝑄30(𝑡) 𝑄31(𝑡) 0 0 𝑄34(𝑡) 0 0

𝑄40(𝑡) 0 𝑄42(𝑡) 𝑄43(𝑡) 0 0 0

𝑄50(𝑡) 0 0 𝑄53(𝑡) 0 0 0

𝑄60(𝑡) 0 0 0 𝑄64(𝑡) 0 0
]
 
 
 
 
 
 
 
 

 . (7) 

Moreover we suppose that initial distribution of the process is 

𝒑(0) = [0 0 0 0 𝑝 𝑞] 

where  

 𝑝, 𝑞 > 0, 𝑝 + 𝑞 = 1. 

Construction of the semi-Markov model consists in determining of the matrix 

𝑄(𝑡) components on the basis of assumptions. We begin from determining of the tran-

sition probabilities from the ‘dawn’ states. 

According to (2) and (3) we have  

𝑄05(𝑡) = 𝑄15(𝑡) = 𝑄25(𝑡) = 𝑝 𝐻(𝑡) ; 

𝑄06(𝑡) = 𝑄16(𝑡) = 𝑄26(𝑡) = 𝑞 𝐻(𝑡). 

Transition probability from the state 3 we calculate the following way: 

𝑄30(𝑡) = 𝑃(𝑈 = 0, 휁𝐵 ≤ 𝑡) = (1 − 𝑎)𝐹𝐵(𝑡); 

𝑄31(𝑡) = 𝑃(𝑈 = 1, 휁𝐵 ≤ 𝑡,  𝛾𝐴 > 휁𝐵) = 𝑎 ∬

𝐶31

𝑓𝐵(𝑥)𝑑𝑥 𝑑𝐻𝐴(𝑦), 

where  

𝐶31 = {(𝑥, 𝑦): 𝑥 ≤ 𝑡, 𝑦 > 𝑥}  

and finally 

 𝑄31(𝑡) = 𝑎 ∫
𝑡

0
 𝑓𝐵(𝑥)[1 − 𝐻𝐴(𝑥)]𝑑𝑥.  (10)  

Similarly 

𝑄34(𝑡) = 𝑃(𝑈 = 1, 휁𝐵 ≤ 𝑡, 𝛾𝐴 < 휁𝐵) = 𝑎 ∬

𝐶34

𝑓𝐵(𝑥)𝑑𝑥 𝑑𝐻𝐴(𝑦), 
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where  

𝐶34 = {(𝑥, 𝑦): 𝑥 ≤ 𝑡, 𝑦 < 𝑥}. 

Hence 

 𝑄34(𝑡) = 𝑎 ∫
𝑡

0
 𝑓𝐵(𝑥) 𝐻𝐴(𝑥)𝑑𝑥  (11)  

in a similar way we get  

 𝑄40(𝑡) = 𝑃(𝑈 = 0, 휁𝐴 ≤ 𝑡) = (1 − 𝑎)𝐹𝐴(𝑡); (12) 

 𝑄42(𝑡) = 𝑃(𝑈 = 1, 휁𝐴 ≤ 𝑡,  𝛾𝐵 > 휁𝐴) = 𝑎 ∫
𝑡

0
 𝑓𝐴(𝑥)[1 − 𝐻𝐵(𝑥)]𝑑𝑥; (13) 

 𝑄43(𝑡) = 𝑃(𝑈 = 1, 휁𝐴 ≤ 𝑡, 𝛾𝐵 < 휁𝐴) = 𝑎 ∫
𝑡

0
𝑓𝐴(𝑥) 𝐻𝐵(𝑥)𝑑𝑥; (14)  

 𝑄50(𝑡) = 𝑃(𝑈 = 0, 휁𝐴 ≤ 𝑡) = (1 − 𝑎)𝐹𝐴(𝑡); (15)  

 𝑄53(𝑡) = 𝑃(𝑈 = 1, 휁𝐴 ≤ 𝑡) = 𝑎 𝐹𝐴(𝑡); (16) 

 𝑄60(𝑡) = 𝑃(𝑈 = 0, 휁𝐵 ≤ 𝑡) = (1 − 𝑎)𝐹𝐵(𝑡); (17)  

 𝑄64(𝑡) = 𝑃(𝑈 = 1, 휁𝐵 ≤ 𝑡) = 𝑎 𝐹𝐵(𝑡). (18) 

All elements of the kernel 𝑄(𝑡) have been defined, hence the semi-Markov 

process {𝑋(𝑡): 𝑡 ≥ 0} describing the reliability of the cold standby system is con-

structed. 

For all states we need to calculate the transition probabilities of the embedded 

Markov chain and also distributions of the waiting and holding times. Applying (3), 

(7)–(18) we can determine the transition probabilities matrix of the embedded 

Markov chain {𝑋(𝜏𝑛): 𝑛 = 0,1,… }  

 𝑷 =

[
 
 
 
 
 
 
 
0 0 0 0 0 𝑝 𝑞
0 0 0 0 0 𝑝 𝑞
0 0 0 0 0 𝑝 𝑞
𝑝30 𝑝31 0 0 𝑝34 0 0
𝑝40 0 𝑝42 𝑝43 0 0 0
1 − 𝑎 0 0 𝑎 0 0 0
1 − 𝑎 0 0 0 𝑎 0 0

]
 
 
 
 
 
 
 

,  (19) 

where  

𝑝30 = 1 − 𝑎, 𝑝31 = 𝑎 ∫
∞

0

 𝑓𝐵(𝑥)[1 − 𝐻𝐴(𝑥)]𝑑𝑥,  𝑝34 = 𝑎 ∫
∞

0

𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥; 

𝑝40 = 1 − 𝑎 , 𝑝42 = 𝑎 ∫
∞

0

𝑓𝐴(𝑥)[1 − 𝐻𝐵(𝑥)]𝑑𝑥, 𝑝43 = 𝑎 ∫
∞

0

 𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥. 
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(23) 

(24) 

Using formula (4) and equalities (8)-(18) we obtain CDF’s of the waiting 

times for the states 𝑖 ∈ 𝑆. 

  𝐺0(𝑡) = 𝑄05(𝑡) + 𝑄06(𝑡) = 𝑝 𝐻(𝑡) + 𝑞 𝐻(𝑡) = 𝐻(𝑡);  (20)  

  𝐺1(𝑡) = 𝑄15(𝑡) + 𝑄16(𝑡) = 𝑝 𝐻(𝑡) + 𝑞 𝐻(𝑡) = 𝐻(𝑡);  (21)  

  𝐺2(𝑡) = 𝑄25(𝑡) + 𝑄26(𝑡) = 𝑝 𝐻(𝑡) + 𝑞 𝐻(𝑡) = 𝐻(𝑡);  (22) 

 𝐺3(𝑡) = 𝑄30(𝑡) + 𝑄31(𝑡) + 𝑄34(t) = 

= (1 − 𝑎)𝐹𝐵(𝑡) + 𝑎 ∫
𝑡

0

 𝑓𝐵(𝑥)[1 − 𝐻𝐴(𝑥)]𝑑𝑥 + 𝑎 ∫
𝑡

0

 𝑓𝐵(𝑥) 𝐻𝐴(𝑥)𝑑𝑥 = 𝐹𝐵(𝑡); 

 𝐺4(𝑡) = 𝑄40(𝑡) + 𝑄42(𝑡) + 𝑄43(t) = 

= (1 − 𝑎)𝐹𝐴(𝑡) + 𝑎 ∫
𝑡

0

 𝑓𝐴(𝑥)[1 − 𝐻𝐵(𝑥)]𝑑𝑥 + 𝑎 ∫
𝑡

0

 𝑓𝐴(𝑥) 𝐻𝐵(𝑥)𝑑𝑥 =  𝐹𝐴(𝑡); 

 𝐺5(𝑡) =  𝑄50(𝑡) + 𝑄53(𝑡)  = (1 − 𝑎)𝐹𝐴(𝑡) + 𝑎 𝐹𝐴(𝑡) = 𝐹𝐴(𝑡); (25)  

 𝐺6(𝑡) =  𝑄60(𝑡) + 𝑄64(𝑡) = (1 − 𝑎)𝐹𝐵(𝑡) + 𝑎 𝐹𝐵(𝑡) =  𝐹𝐵(𝑡).  (26)  

Applying the equality (5) and (8)-(19) we calculate CDF’s of the holding 

times. 

 𝐹05(𝑡) = 𝐹15(𝑡) = 𝐹25(𝑡) =  𝐹06(𝑡) = 𝐹16(𝑡) = 𝐹26(𝑡) =  𝐻(𝑡); (27)  

  𝐹30(𝑡) = 𝐹𝐵(𝑡), 𝐹31(𝑡) =
∫

𝑡

0  𝑓𝐵(𝑥)[1−𝐻𝐴(𝑥)]𝑑𝑥

∫
∞

0  𝑓𝐵(𝑥)[1−𝐻𝐴(𝑥)]𝑑𝑥
 , 𝐹34(𝑡) =

∫
𝑡

0  𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥

∫
∞

0  𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥
 ; (28)  

 𝐹40(𝑡) = 𝐹𝐴(𝑡), 𝐹42(𝑡) =
∫

𝑡

0  𝑓𝐴(𝑥)[1−𝐻𝐵(𝑥)]𝑑𝑥

∫
∞

0  𝑓𝐴(𝑥)[1−𝐻𝐵(𝑥)]𝑑𝑥
 , 𝐹43(𝑡) =

∫
𝑡

0  𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥

∫
∞

0  𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥
; (29)  

 𝐹50(𝑡) = 𝐹53(𝑡) = 𝐹𝐴(𝑡),  𝐹60(𝑡) = 𝐹64(𝑡) = 𝐹𝐵(𝑡).  (30) 

RELIABILITY CHARACTERISTICS 

Assume that evolution of a system reliability is describe by a finite states 

space 𝑆 semi-Markov process {𝑋(𝑡): 𝑡 ≥ 0}. Elements of a set 𝑆 represent the relia-

bility states of the system. Let 𝑆+ consists of the functioning states (up states) and 

𝑆− contains all the failed states (down states). The subset 𝑆+ and 𝑆− form a parti-

tion of 𝑆 , i.e., 𝑆 = 𝑆+ ∪ 𝑆− and 𝑆+ ∩ 𝑆− = 0. Suppose that 𝑖 ∈ 𝑆+ is an initial state of 

the process. The conditional reliability function is defined by  

 𝑅𝑖(𝑡) = 𝑃(∀𝑢 ∈ [0, 𝑡], 𝑋(𝑢) ∈ 𝑆+|𝑋(0) = 𝑖), 𝑖 ∈ 𝑆+.  (31) 
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Let 𝑆− = 𝐷, and 𝑆+ = 𝐷′ . From the Chapman-Kolmogorov property of a two 

dimensional Markov chain {(𝑋(𝜏𝑛), 𝜏𝑛): 𝑛 = 0,1,2,… }, we obtain  

 𝑅𝑖(𝑡) = 1 − 𝐺𝑖(𝑡) + ∑𝑗∈𝐷′ ∫
𝑡

0
𝑅𝑗(𝑡 − 𝑢)𝑑𝑄𝑖𝑗(𝑢), 𝑖 ∈ 𝐷′.  (32) 

Passing to the Laplace transform we get  

 �̃�𝑖(𝑠) =
1

𝑠
− �̃�𝑖(𝑠) + ∑𝑗∈𝐷′ �̃�𝑖𝑗(𝑠)�̃�𝑗(𝑠), 𝑖 ∈ 𝐷′,  (33)  

where �̃�𝑗(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑅𝑗(𝑡)𝑑𝑡. 

The matrix form of the equation system is 

 (𝐼 − 𝑞𝐷′(𝑠))𝑅(𝑠) = 𝑊𝐷′(𝑠),  (34) 

where  

𝑅(𝑠) = [�̃�𝑖(𝑠): 𝑖 ∈ 𝐷′]𝑇, 𝑊𝐷′(𝑠) = [
1

𝑠
− �̃�𝑖(𝑠): 𝑖 ∈ 𝐷′]𝑇 

are one column matrices, and  

𝑞𝐷′(𝑠) = [�̃�𝑖𝑗(𝑠): 𝑖, 𝑗 ∈ 𝐷′],  𝐼 = [𝛿𝑖𝑗: 𝑖, 𝑗 ∈ 𝐷′] 

are square matrices. Note that  

�̃�𝑖(𝑠) =
1

𝑠
∑𝑗∈𝐷′ �̃�𝑖𝑗(𝑠).  

Elements of the matrix  �̃�(𝑠) are the Laplace transforms of the conditional 

reliability functions. We obtain the reliability functions 𝑅𝑖(𝑡), 𝑖 ∈ 𝐷′ by inverting 

the Laplace transforms �̃�𝑖(𝑠), 𝑖 ∈ 𝐷′. 

Now the equation (33) takes the form 

 

[
 
 
 
 
1 −�̃�34(𝑠) 0 0

−�̃�43(𝑠) 1 0 0

−�̃�53(𝑠) 0 1 0

0 −�̃�64(𝑠) 0 1
]
 
 
 
 

 

[
 
 
 
 
�̃�3(𝑠)

�̃�4(𝑠)

�̃�5(𝑠)

�̃�6(𝑠)]
 
 
 
 

 = 

[
 
 
 
 
 

 

1

𝑠
− �̃�𝐵(𝑠)

1

𝑠
− �̃�𝐴(𝑠)

1

𝑠
− �̃�𝐴(𝑠)

1

𝑠
− �̃�𝐵(𝑠)]

 
 
 
 
 

. (35) 

The solution is 

 �̃�3(𝑠) =  
�̃�34(𝑠)(1−𝑠�̃�𝐴(𝑠))+(1−𝑠�̃�𝐵(𝑠))

𝑠(1−�̃�34(𝑠) �̃�43(𝑠))
; (36) 

 �̃�4(𝑠) =
�̃�43(𝑠)(1−𝑠�̃�𝐵(𝑠))+(1−𝑠�̃�𝐴(𝑠))

𝑠(1−�̃�34(𝑠) �̃�43(𝑠))
; (37) 
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 �̃�5(𝑠) =
𝑎(1−𝑠 �̃�𝐵(𝑠)) + 𝑎 �̃�34(𝑠)(1−𝑠 �̃�𝐴(𝑠))+(1−𝑠 �̃�𝐴(𝑠))(1−�̃�34(𝑠) �̃�43(𝑠))

𝑠(1−�̃�34(𝑠)�̃�43(𝑠))
; (38)  

 �̃�6(𝑠) =
𝑎(1−𝑠 �̃�𝐴(𝑠)) +𝑎 �̃�43(𝑠)(1−𝑠 �̃�𝐵(𝑠))+(1−𝑠�̃�𝐵(𝑠))(1−�̃�34(𝑠) �̃�43(𝑠))

𝑠(1−�̃�34(𝑠) �̃�43(𝑠))
.  (39)  

The Laplace transform of unconditional reliability function of the system is 

  �̃�(𝑠) = 𝑝 �̃�5(𝑠) + 𝑞�̃�6(𝑠). (40) 

A conditional means to failure of the system we can calculate using equalities  

 𝐸( 𝛩𝑖) = lim
𝑠→0+

�̃�(𝑠), 𝑠 ∈ (0,∞).  (41)  

Therefore, from (38), (39) and (40) we obtain 

 E(𝛩5) =
𝑎 𝐸(𝑇3)+𝑎𝑝34 𝐸(𝑇4)+𝐸(𝑇5)−𝑝34𝑝43 𝐸(𝑇5) 

1−𝑝34𝑝43
=  𝐸(휁𝐴) +

𝑎 𝐸(𝜁𝐵)+𝑎𝑝34 𝐸(𝜁𝐴) 

1−𝑝34𝑝43
; (42) 

 E(𝛩6) =
𝑎 𝐸(𝑇4)+𝑎𝑝43 𝐸(𝑇3)+𝐸(𝑇6)−𝑝34𝑝43 𝐸(𝑇6) 

1−𝑝34𝑝43
=  𝐸(휁𝐵) +

𝑎 𝐸(𝜁𝐴)+𝑎𝑝34 𝐸(𝜁𝐵) 

1−𝑝34𝑝43
.  (43) 

According to (40), (41) and (42) we get the mean time to failure of the system. 

 𝐸( 𝛩) =  𝑝 𝐸(휁𝐴) + 𝑞 𝐸(휁𝐵) + 𝑝 𝑎
𝐸(𝜁𝐵)+𝑝34 𝐸(𝜁𝐴) 

1−𝑝34𝑝43
+ 𝑞 𝑎

 𝐸(𝜁𝐴)+𝑝34 𝐸(𝜁𝐵) 

1−𝑝34𝑝43
 , (44) 

where 

 𝑝34 = 𝑎 ∫
∞

0
𝑓𝐵(𝑥) 𝐻𝐴(𝑥)𝑑𝑥, 𝑝43 = 𝑎 ∫

∞

0
 𝑓𝐴(𝑥) 𝐻𝐵(𝑥)𝑑𝑥.  (45) 

AN APPROXIMATE RELIABILITY FUNCTION 

In general case calculating an exactly reliability function of the system by 

means of Laplace transforms is a complicated matter. Finding an approximate reliability 

function of that system is possible by using results from the theory of semi-Markov 

processes perturbations. The perturbed semi-Markov processes are defined in dif-

ferent ways by different authors. We introduce Pavlov and Ushakov concept of the 

perturbed semi-Markov process presented by Gertsbakh [4]. 

Let 𝐷′ = 𝑆 − 𝐷 be a finite subset of states and 𝐷 be at least countable sub-

set of 𝑆. Suppose {𝑋(𝑡): 𝑡 ≥ 0} is SM process with the state space 𝑆 = 𝐷 ∪ 𝐷′ and 

the kernel Q(𝑡) = [𝑄𝑖𝑗(𝑡): 𝑖, 𝑗 ∈ 𝑆], the elements of which have the form  

 𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝐹𝑖𝑗(𝑡).  (46) 
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Assume that  

 휀𝑖 = ∑𝑗∈𝐷 𝑝𝑖𝑗   and 𝑝𝑖𝑗
0 =

𝑝𝑖𝑗

1−𝜀𝑖
, 𝑖, 𝑗 ∈ 𝐷′.  (47) 

Let us notice that ∑𝑗∈𝐷′ 𝑝𝑖𝑗
0 = 1.  

A semi-Markov process {𝑋(𝑡): 𝑡 ≥ 0} with the discrete state space 𝑆 defined 

by the renewal kernel 𝑄(𝑡) = [ 𝑝𝑖𝑗𝐹𝑖𝑗(𝑡): 𝑖, 𝑗 ∈ 𝑆 ], is called the perturbed process with 

respect to SM process {𝑋0(𝑡): 𝑡 ≥ 0} with the state space 𝐷′ defined by the kernel 

 𝑄0(𝑡) = [ 𝑝𝑖𝑗
0 𝐹𝑖𝑗(𝑡): 𝑖, 𝑗 ∈ 𝐷′ ].  (48) 

We quote our version of I. V. Pavlov and I. A. Ushakov [9] theorem. The ran-

dom variable Θ𝑖𝐷 = inf{𝑡: 𝑋(𝑡) ∈ 𝐷 | 𝑋(0) = 𝑖}, 𝑖 ∈ 𝐷′ denotes the first passage time 

from the state 𝑖 ∈ 𝐷′ to the subset 𝐷. The function 𝐺𝑖
0(𝑡) = ∑𝑗∈𝐷′ 𝑄𝑖𝑗

0 (𝑡) denotes CDF of 

the waiting time in the state 𝑖 ∈ 𝐷′. The number 𝑚𝑖
0 = ∫

∞

0
𝑥 𝑑𝐺𝑖

0(𝑡), 𝑖 ∈ 𝐷′, is the ex-

pected value of the waiting time in state 𝑖 for the process {𝑋0(𝑡): 𝑡 ≥ 0}. Denote the 

stationary distribution of the embedded Markov chain in SM process {𝑋0(𝑡): 𝑡 ≥ 0} 

by 𝜋0 = [𝜋𝑖
0: 𝑖 ∈ 𝐷′] . Let  

 휀 = ∑𝑖∈𝐷′ 𝜋𝑖
0휀𝑖   and 𝑚0 = ∑𝑖∈𝐷 𝜋𝑖

0𝑚𝑖
0.  (49)  

We are interested in the limiting distribution of the random variable 

Θ𝑖𝐷, 𝑖 ∈ 𝐷′. We will quote a theorem, which can be found in the monograph [6] on 

page 72. 

Theorem 1. If the embedded Markov chain defined by the matrix of transition proba-

bilities 𝑃 = [ 𝑝𝑖𝑗: 𝑖, 𝑗 ∈ 𝑆] satisfies following conditions: 

 𝑓𝑖𝐴 = 𝑃(Δ𝐷 < ∞|𝑋(0) = 𝑖) = 1, 𝑖 ∈ 𝐷′, Δ𝐷 = min {𝑛: 𝑋(𝜏𝑛) ∈ 𝐷}; 

 ∀
𝑖∈𝐷

 𝜇𝑖𝐷 = ∑∞
𝑛=1 𝑛𝑓𝑖𝐷(𝑛) < ∞; 

 ∃
𝑐>0

 ∀
𝑖,𝑗∈𝑆

 0 < 𝐸(𝑇𝑖𝑗) ≤ 𝑐,  

then 

 lim
𝜀→0

𝑃(휀Θ𝑖𝐷  >  𝑥) = 𝑒−
𝑥

𝑚0 ,  (50) 

where 𝜋0 = [𝜋𝑖: 𝑖 ∈ 𝐷′] is the unique solution of the linear system of equations  

 𝜋0 = 𝜋0 𝑃 0, 𝜋0 𝟏 = 1.  (51) 
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The considered SM process {𝑋(𝑡): 𝑡 ≥ 0}  with the state space 𝑆 = {0,1,2,3,4,5,6}  

we can assume to be the perturbed process with respect to the SM process 

{𝑋0(𝑡): 𝑡 ≥ 0} with the state space 𝐷′ = {3,4,5,6} and the kernel 

 𝑄0(𝑡) =

[
 
 
 
 
 

00)(0

000)(

000)(

00)(0

0

64

0

53

0

43

0

34

tQ

tQ

tQ

tQ

]
 
 
 
 
 

, (52)  

where  

𝑄34
0 (𝑡) = 𝑝34

0 𝐹34(𝑡),𝑄43
0 (𝑡) = 𝑝43

0 𝐹43(𝑡),  𝑄53
0 (𝑡) = 𝑝53

0 𝐹53(𝑡); 

 𝑄64
0 (𝑡) = 𝑝64

0 𝐹64(𝑡).  

From (4), (7) and (52) we obtain  

𝑝34
0 = 1, 𝑝43

0 = 1, 𝑝53
0 = 1, 𝑝64

0 = 1. 

The transition matrix of the embedded Markov chain of SM process 

{𝑋0(𝑡): 𝑡 ≥ 0} is  

 𝑃0 =

[
 
 
 
 
 

0010

0001

0001

0010

]
 
 
 
 
 

 . 

Taking under consideration presented above the CDF’s 𝐹𝑖𝑗(𝑡), t ≥ 0, we get  

 𝑄34
0 (𝑡) = 𝐹34(𝑡) =

∫
𝑡

0  𝑓𝐵(𝑥) 𝐻𝐴(𝑥) 𝑑𝑥

∫
∞

0  𝑓𝐵(𝑥)𝐻𝐴(𝑥) 𝑑𝑥
; (53)  

 𝑄43
0 (𝑡) = 𝐹43(𝑡) =

∫
𝑡

0  𝑓𝐴(𝑥) 𝐻𝐵(𝑥) 𝑑𝑥

∫
∞

0  𝑓𝐴(𝑥)𝐻𝐵(𝑥) 𝑑𝑥
; (54)  

𝑄50
0 (𝑡) = 𝐹50(𝑡) = 𝐹𝐴(𝑡),𝑄60

0 (𝑡) = 𝐹60(𝑡) = 𝐹𝐵(𝑡) . 

From (19 ) and (47) we have 

 휀3 = 𝑝30 + 𝑝31 = 1 − 𝑎 ∫
∞

0
𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥; (55) 

 휀4 = 𝑝40 + 𝑝42 = 1 − 𝑎 ∫
∞

0
𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥; (56) 

휀5 = 𝑝50 = 1 − 𝑎, 휀6 = 𝑝60 = 1 − 𝑎.  
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From the system of equations  

[𝜋1
0 𝜋2

0 𝜋3
0 𝜋4

0 ] 𝑃0 = [𝜋1
0 𝜋2

0 𝜋3 
0𝜋4

0], 𝜋1
0 + 𝜋2

0 + 𝜋3
0 + 𝜋4

0  = 1 

we get 

𝜋3
0 = 0.5, 𝜋4

0 = 0.5, 𝜋5
0 = 0 , 𝜋6

0 = 0 . 

From (47), (48), (50)–(56) and from the presented above theorem it fol-

lows that for small 휀  

 𝑅(𝑡) = 𝑃(Θ𝑖𝐷 > 𝑡)  =  𝑃(휀Θ𝑖𝐷 > 휀𝑡) ≈ exp [−
𝜀

𝑚0  𝑡] , 𝑡 ≥ 0,  (57)  

where  

 휀 = 0.5(휀3 + 휀4) = 1 − 0.5 𝑎(∫
∞

0
𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥 + ∫

∞

0
𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥)  (58)  

and 

 𝑚0 = 0.5(𝑚3
0 + 𝑚4

0) = 0.5
∫

∞

0 𝑥𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥

∫
∞

0 𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥
+ 0.5

∫
∞

0 𝑥𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥

∫
∞

0 𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥
.  (59) 

From the shape of the parameter 휀 it follows that we can apply this formula 

only if the numbers 𝑃(𝛾𝐵 ≥ 휁𝐴), 𝑃(𝛾𝐴 ≥ 휁𝐵) denoting probabilities of the compo-

nents failure during the repair periods of an earlier failed components are small. 

EXAMPLE 

We assume that random variables 휁𝐴, 휁𝐵, denoting the lifetimes of units 𝐴 

and 𝐵, have exponential distributions defined by PDF’s  

𝑓𝐴(𝑥) =  𝛼𝐴𝑒−𝛼𝐴 𝑥 , 𝑓𝐵(𝑥) =  𝛼𝐵𝑒−𝛼𝐵 𝑥, 𝑥 ≥ 0; 

𝛼𝐴 > 0, 𝛼𝐵 > 0. 

The repair times of the failed units which are represented by the random 

variables 𝛾𝐴, 𝛾𝐵  have Erlang distributions with PDF  

ℎ𝐴(𝑥) = 𝜇𝐴
2  𝑥 𝑒−𝜇𝐴 𝑥, ℎ𝐵(𝑥) = 𝜇𝐵

2  𝑥 𝑒−𝜇𝐵 𝑥 , 𝑥 ≥ 0; 

𝜇𝐴 > 0, 𝜇𝐵 > 0. 

Now, the functions that are elements of the semi-Markov kernel (7), are 

given by the following equalities.  
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𝑄05(𝑡) = 𝑄15(𝑡) = 𝑄25(𝑡) = 𝑝 𝐻(𝑡) ; 

𝑄06(𝑡) = 𝑄16(𝑡) = 𝑄26(𝑡) = 𝑞 𝐻(𝑡),   where   𝑝, 𝑞 > 0, 𝑝 + 𝑞 = 1; 

𝑄30(𝑡) = 𝑃(𝑈 = 0, 휁𝐵 ≤ 𝑡) = (1 − 𝑎)(1 − 𝑒−𝛼𝐵𝑡); 

𝑄31(𝑡) = 𝑎 ∫
𝑡

0

 𝛼𝐵𝑒−𝛼𝐵 𝑥(1 + 𝜇𝐴 𝑥 𝑒−𝜇𝐴 𝑥)𝑑𝑥 = 

= 𝑎
𝛼𝐵

(𝛼𝐵 + 𝜇𝐴)2
[𝛼𝐴 + 2𝜇𝐵 − (𝛼𝐵 + 𝛼𝐵𝜇𝐴 𝑡 + 𝜇𝐴 (2 + 𝜇𝐴 𝑡))𝑒−(𝛼𝐵+𝜇𝐴) 𝑡]; 

𝑄34(𝑡) = 𝑎 ∫
𝑡

0
 𝛼𝐵𝑒−𝛼𝐵 𝑥(1 − (1 + 𝜇𝐴 𝑥) 𝑒−𝜇𝐴 𝑥)𝑑𝑥; 

𝑄40(𝑡) = 𝑃(𝑈 = 0, 휁𝐴 ≤ 𝑡) = (1 − 𝑎)(1 − 𝑒−𝛼𝐴𝑡); 

𝑄42(𝑡) = 𝑃(𝑈 = 1, 휁𝐴 ≤ 𝑡,  𝛾𝐵 > 휁𝐴) = 

= 𝑎
𝛼𝐴

(𝛼𝐴 + 𝜇𝐵)2
[𝛼𝐵 + 2𝜇𝐴 − (𝛼𝐴 + 𝛼𝐴𝜇𝐵 𝑡 + 𝜇𝐵 (2 + 𝜇𝐵 𝑡))𝑒−(𝛼𝐴+𝜇𝐵) 𝑡]; 

𝑄43(𝑡) = 𝑃(𝑈 = 1, 휁𝐴 ≤ 𝑡, 𝛾𝐵 < 휁𝐴) = 

= 𝑎 ∫
𝑡

0

 𝛼𝐴𝑒−𝛼𝐴 𝑥(1 − (1 + 𝜇𝐵 𝑥 )𝑒−𝜇𝐵 𝑥)𝑑𝑥; 

𝑄50(𝑡) = 𝑃(𝑈 = 0, 휁𝐴 ≤ 𝑡) = (1 − 𝑎)(1 − 𝑒−𝛼𝐴𝑡); 

𝑄53(𝑡) = 𝑃(𝑈 = 1, 휁𝐴 ≤ 𝑡) = 𝑎(1 − 𝑒−𝛼𝐴𝑡); 

𝑄60(𝑡) = 𝑃(𝑈 = 0, 휁𝐵 ≤ 𝑡) = (1 − 𝑎)(1 − 𝑒−𝛼𝐵𝑡); 

𝑄64(𝑡) = 𝑃(𝑈 = 1, 휁𝐵 ≤ 𝑡) = 𝑎 (1 − 𝑒−𝛼𝐵𝑡). 

From assumption and (44), (45) we obtain the mean time to failure of the sys-

tem in this case 

𝐸( 𝛩) =  𝑝 𝐸(휁𝐴) + 𝑞 𝐸(휁𝐵) + 𝑝 𝑎
𝐸(휁𝐵) + 𝑝34 𝐸(휁𝐴) 

1 − 𝑝34𝑝43
+ 𝑞 𝑎

 𝐸(휁𝐴) + 𝑝34 𝐸(휁𝐵) 

1 − 𝑝34𝑝43
 , 

where 

𝐸(휁𝐴) =
1

𝛼𝐴
, 𝐸(휁𝐵) =  

1

𝛼𝐵
 ; 

𝑝34 = 𝑎 ∫
∞

0

 𝛼𝐵𝑒−𝛼𝐵 𝑥(1 − (1 + 𝜇𝐴 𝑥) 𝑒−𝜇𝐴 𝑥)𝑑𝑥 =
(𝜇𝐴)2

(𝛼𝐵 + 𝜇𝐴)2
 ; 

𝑝43 = 𝑎 ∫
∞

0

 𝛼𝐴𝑒−𝛼𝐴 𝑥(1 − (1 + 𝜇𝐵 𝑥 )𝑒−𝜇𝐵 𝑥)𝑑𝑥 =
(𝜇𝐵)2

(𝛼𝐴 + 𝜇𝐵)2 
. 
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For  

𝛼𝐴 = 0,0002, 𝛼𝐵 = 0,0005,  𝜇𝐴 = 0,06,             𝜇𝐵 = 0,05 [
1

ℎ
] ; 

 𝑝 = 1, 𝑎 = 0,968 

we have  

𝐸( 𝛩) =  𝐸(휁𝐴) +  𝑎
𝐸(𝜁𝐵)+𝑝34 𝐸(𝜁𝐴) 

1−𝑝34𝑝43
 = 668862 [ℎ]. 

CONCLUSIONS 

The reliability model of the cold standby system consist of two different 

units is constructed by using the concept of the embedded semi-Markov process.  

Results of semi-Markov process theory allowed us to compute reliability 

characteristics of the system. 

The Laplace transform of unconditional reliability function of the system is 

 �̃�(𝑠) = 𝑝 �̃�5(𝑠) + 𝑞�̃�6(𝑠), 

where the Laplace transform of conditional reliability functions  �̃�5(𝑠), �̃�6(𝑠) are 

given by (38) and (39). 

The mean time to failure of the considered cold standby system depend on 

of the both components probability distribution of the lifetimes and renewal times 

and also on initial distribution of the process and the switch reliability 

𝐸( 𝛩) = 𝑝 𝐸(휁𝐴) + 𝑞 𝐸(휁𝐵) + 𝑝 𝑎
𝐸(휁𝐵) + 𝑝34 𝐸(휁𝐴) 

1 − 𝑝34𝑝43
+ 𝑞 𝑎

 𝐸(휁𝐴) + 𝑝34 𝐸(휁𝐵) 

1 − 𝑝34𝑝43
; 

𝑝34 = 𝑎 ∫
∞

0

 𝑓𝐵(𝑥)𝐻𝐴(𝑥) 𝑑𝑥, 𝑝43 = 𝑎 ∫
∞

0

 𝑓𝐴(𝑥)𝐻𝐵(𝑥) 𝑑𝑥. 

If operating process starts from the state 5 with probability 𝑝 = 1 then 

mean time to failure is 

𝐸( 𝛩) =  𝐸(휁𝐴) +  𝑎
𝐸(휁𝐵) + 𝑝34 𝐸(휁𝐴) 

1 − 𝑝34𝑝43
 

This results was presented in [6].  

If distributions of times to failure and renewal times of components 𝐴 and 𝐵 are 

identical: 𝑓𝐴(𝑥) = 𝑓𝐵(𝑥) = 𝑓(𝑥),𝐻𝐴(𝑥) = 𝐻𝐵(𝑥) = 𝐻(𝑥), we obtain result shown in [5]. 

𝐸(𝛩) = 𝐸(휁) + 𝑎 
𝐸(𝜁)

1−𝑐
 where 𝑐 = 𝑎 ∫

∞

0
 𝑓(𝑥)𝐻(𝑥) 𝑑𝑥. 
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The cold standby causes the increase of the mean time to failure 1 +
𝑎 

1−𝑐
  

times in this case.  

If moreover the switch is reliable ( 𝑎 = 1 ) we get well known result pre-

sented in [1, 3, 8]. 

The approximate reliability function of the system is exponential (58) 

𝑅(𝑡) ≈ exp [−
𝜀

𝑚0  𝑡] , 𝑡 ≥ 0. 
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S E M I - M A R K O W S K I  M O D E L  S Y S T E M U   
Z  R E Z E R W Ą  Z I M N Ą  Z Ł O Ż O N Y   

Z  D W Ó C H  R Ó Ż N Y C H  P O D S Y S T E M Ó W  

STRESZCZENIE 

Do rozwiązania problemu z zakresu teorii niezawodności został zastosowany proces semi-Markowa. 

Problem dotyczy tak zwanego systemu z rezerwą zimną, który jest złożony z dwóch różnych 
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podsystemów i przełącznika. Aby uzyskać charakterystyki i parametry niezawodności tego sys-

temu, jako model funkcjonowania systemu konstruujemy proces semi-Markowa — tak zwany 

proces włożony w inny proces stochastyczny. W naszym modelu czas zdatności systemu jest 

reprezentowany przez zmienną losową oznaczającą czas pierwszego przejścia z danego stanu do okre-

ślonego podzbioru stanów. W celu obliczenia funkcji niezawodności i średniego czasu do awarii 

systemu stosujemy twierdzenia teorii procesów semi-markowskich dotyczące warunkowej funkcji 

niezawodności. Najczęściej dokładna funkcja niezawodności systemu przy zastosowaniu trans-

formaty Laplace’a jest trudna do wyliczenia. W takim przypadku teoria zaburzonych procesów 

semi-markowskich pozwala otrzymać przybliżoną funkcję niezawodności systemu. 

Słowa kluczowe:  

niezawodność, proces semi-Markowa, system z rezerwą zimną. 


