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FACIAL RAINBOW EDGE-COLORING
OF SIMPLE 3-CONNECTED PLANE GRAPHS

Július Czap

Communicated by Adam Paweł Wojda

Abstract. A facial rainbow edge-coloring of a plane graph G is an edge-coloring such that
any two edges receive distinct colors if they lie on a common facial path of G. The minimum
number of colors used in such a coloring is denoted by erb(G). Trivially, erb(G) ≥ L(G) + 1
holds for every plane graph without cut-vertices, where L(G) denotes the length of a longest
facial path in G. Jendroľ in 2018 proved that every simple 3-connected plane graph admits
a facial rainbow edge-coloring with at most L(G) + 2 colors, moreover, this bound is tight for
L(G) = 3. He also proved that erb(G) = L(G) + 1 for L(G) 6∈ {3, 4, 5}. He posed the following
conjecture: There is a simple 3-connected plane graph G with L(G) = 4 and erb(G) = L(G)+2.
In this note we answer the conjecture in the affirmative.

Keywords: plane graph, facial path, edge-coloring.

Mathematics Subject Classification: 05C10, 05C15.

1. INTRODUCTION

We use standard graph theory terminology according to [2]. However, the most frequent
notions of the paper are defined through it. A plane graph is a particular drawing
of a planar graph in the Euclidean plane such that no edges intersect. Let G be
a connected plane graph with vertex set V (G), edge set E(G), and face set F (G). The
boundary of a face f is the boundary in the usual topological sense. It is the collection
of all edges and vertices contained in the closure of f that can be organized into
a closed walk in G traversing along a simple closed curve lying just inside the face f .
This closed walk is unique up to the choice of initial vertex and direction, and is called
the boundary walk of the face f (see [9, p. 101]). Let f be a face having the boundary
walk v0v1 . . . vk−1v0 with vi ∈ V (G) and vivi+1 ∈ E(G), i = 0, . . . , k − 1, subscripts
taken modulo k. A facial path of f is a subpath vmvm+1 . . . vn of the boundary walk
of f (i.e. a facial path is any path which is a consecutive part of the boundary walk of
a face).
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Two vertices (two edges) are adjacent if they are connected by an edge (have
a common endvertex). A vertex and an edge are incident if the vertex is an endvertex
of the edge. A vertex (or an edge) and a face are incident if the vertex (or the edge)
lies on the boundary of the face.

The dual G∗ of a plane graph G is obtained as follows: Corresponding to each face
f of G there is a vertex f∗ of G∗, and corresponding to each edge e of G there is an
edge e∗ of G∗; two vertices f∗ and g∗ are joined by the edge e∗ in G∗ if and only if their
corresponding faces f and g are separated by the edge e in G (an edge separates the
faces incident with it). It is easy to see that the dual of a plane graph is itself a planar
graph; in fact, there is a natural embedding of G∗ in the plane. We place each vertex
f∗ in the corresponding face f of G, and then draw each edge e∗ in such a way that it
crosses the corresponding edge e of G exactly once (and crosses no other edge of G).

An edge-coloring of a graph G is an assignment of colors to the edges, one color to
each edge. An edge-coloring c of a graph G is proper if for any two adjacent edges
e1 and e2 of G, c(e1) 6= c(e2) holds. The chromatic index of G, denoted by χ′(G), is
the minimum number of colors needed for a proper edge-coloring of G. Clearly, at
least ∆ colors are required for any proper edge-coloring of a graph with maximum
degree ∆. By the well-known Vizing’s theorem [23], ∆(G) ≤ χ′(G) ≤ ∆(G) + 1 holds
for every simple graph G. This leads to a natural classification of simple graphs into
two classes. A simple graph G is said to be of class one if χ′(G) = ∆(G) and of
class two if χ′(G) = ∆(G) + 1. By a result of Holyer [12], the problem of determining
the chromatic index of an arbitrary simple graph is NP-complete. In fact, the problem
is NP-complete even for simple cubic graphs. Simple graphs of class two are relatively
scarce. Erdős and Wilson [7] proved that almost all simple graphs are of class one.
Vizing [24] showed that every simple planar graph with maximum degree ∆ ≥ 8 is of
class one and conjectured that the same holds for 6 ≤ ∆ ≤ 7. The first part of this
conjecture was proved independently by Sanders and Zhao [20] and Zhang [29]. For
every 2 ≤ ∆ ≤ 5, there are simple planar graphs of class two with maximum degree ∆.
Such graphs can be obtained from any ∆-regular simple planar graph with an even
number of vertices by subdividing one of its edges.

A facial rainbow edge-coloring of a plane graphG is an edge-coloring (not necessarily
proper) such that any two edges receive distinct colors if they lie on a common facial
path of G. The minimum number of colors used in such a coloring is denoted by
erb(G). Trivially, erb(G) ≥ L(G), where L(G) denotes the length of a longest facial
path in G. If G is without cut-vertices, then erb(G) ≥ L(G) + 1 (since in a 2-connected
plane graph every face is bounded by a cycle). This type of coloring was introduced by
Jendroľ [14]. He proved that every connected loopless plane graph G admits a facial
rainbow edge-coloring with at most

⌊ 3
2 · (L(G) + 1)

⌋
colors. Moreover, the bound is

tight. For simple 3-connected plane graphs he obtained the following result.
Theorem 1.1 ([14]). If G is a simple 3-connected plane graph, then
(i) erb(G) = L(G) + 1 for L(G) 6∈ {3, 4, 5}, and
(ii) L(G) + 1 ≤ erb(G) ≤ L(G) + 2 for L(G) ∈ {3, 4, 5}.
Moreover, the lower bound is tight for all L(G), the upper bound in (ii) is tight
for L(G) = 3.
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He posed the following conjecture.
Conjecture 1.2 ([14]).
(i) There is a simple 3-connected plane graph G with L(G) = 4 and erb(G) = L(G)+2.
(ii) There is no simple 3-connected plane graph G with L(G) = 5 and erb(G) =

L(G) + 2.
If G is a simple 3-connected plane graph, then its dual G∗ is also simple and

3-connected, see [15, p. 46]. In every facial rainbow edge-coloring of a 3-connected
plane graph G the edges bounding every face are colored distinctly, hence any such
coloring of G induces a proper edge-coloring of its dual graph G∗ and vice versa,
i.e. erb(G) = χ′(G∗). Therefore, Conjecture 1.2 part (ii) is the “3-connected case” of
Vizing’s Planar Graph Conjecture: Every simple planar graph with maximum degree
6 is of class one. There are many papers, published in recent years, answering Vizing’s
conjecture in the affirmative, provided some additional conditions regarding the absence
of cycles of given length is guaranteed. It is shown that every simple planar graph G
with ∆ = 6 is of class one if it is without 3-cycles, 4-cycles, or 5-cycles [10], 6-cycles [3],
7-cycles [13], chordal 4-cycles [3], chordal 5-cycles [25], chordal 6-cycles [16], 5-cycles
with two chords [27], 6-cycles with two chords [28], 6-cycles with three chords [32],
7-cycles with three chords [30]. Vizing’s Planar Graph Conjecture also holds for simple
planar graphs in which no vertex is incident with four faces of size 3 [26], no 4-cycle
is adjacent to a 5-cycle [17], no 7-cycles are adjacent [31], any k-cycle is adjacent
to at most one k-cycle for some k (k = 3, 4, 5) [18]. Vizing’s conjecture is still open
in general.

In this note we affirm the first part of Conjecture 1.2.

2. RESULTS

Theorem 2.1. For every positive integer n, there is a simple 3-connected plane
graph G on at least n vertices such that L(G) = 4 and erb(G) = L(G) + 2.

As it was mentioned above, erb(G) = χ′(G∗) holds for every simple 3-connected
plane graph G. Therefore it is sufficient to find simple 3-connected planar graphs with
maximum degree five and chromatic index six (then their duals fulfill the conditions
of Theorem 2.1).

In the following, we prove that there are infinitely many simple 3-connected planar
graphs with maximum degree five, chromatic index six, and minimum degree δ, for
every δ ∈ {3, 4, 5} (clearly, the minimum degree of every 3-connected graph is at least
three).
Lemma 2.2. Let G be a simple graph with 2k+ 1 vertices. If G is of class one, then it
has at most k ·∆(G) edges.
Proof. Consider a proper edge-coloring of G with ∆(G) colors. Since the edges of the
same color are independent (no two of them have a common endvertex), there are at
most k edges in each color class. Consequently, we can color at most k ·∆(G) edges
with ∆(G) colors.
Corollary 2.3. If G is a simple graph with 2k + 1 vertices and at least k ·∆(G) + 1
edges, then it is of class two.
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2.1. SIMPLE 3-CONNECTED PLANAR GRAPHS
WITH δ(G) = 3, ∆(G) = 5, AND χ′(G) = 6

The operation of vertex splitting in a graph G replaces a vertex v of degree at least 4
by two vertices x and y, inserts the edge xy and replaces every former edge uv in G,
with either the edge ux or uy such that the degree of x and y is at least three in the
new graph. As proven by Tutte [22], vertex splitting preserves 3-connectivity.

Theorem 2.4 ([22]). Applying a vertex splitting on a 3-connected graph generates
a 3-connected graph.

Lemma 2.5. There are infinitely many simple 3-connected planar graphs with
δ(G) = 3, ∆(G) = 5, and χ′(G) = 6.

Proof. Owens [19] showed that a simple 5-regular planar graph with n vertices exists
if and only if n is even, n ≥ 12, and n 6= 14. From [11] it follows that there is a simple
3-connected 5-regular planar graph with n vertices for any such n.

First we take a simple 3-connected 5-regular planar graph H on 2n vertices. It has
5n edges, since

2|E(H)| =
∑

v∈V (H)

deg(v) = 5 · 2n.

Now we split any vertex of H and obtain a new graph G. The graph G is 3-connected by
Theorem 2.4. The minimum and maximum degree of G is three and five, respectively.
The chromatic index of G is five or six, by Vizing’s theorem. The graph G has 2n+ 1
vertices and 5n+ 1 edges, therefore it is of class two by Corollary 2.3.

2.2. SIMPLE 3-CONNECTED PLANAR GRAPHS
WITH δ(G) = 4, ∆(G) = 5, AND χ′(G) = 6

In a graph G, subdivision of an edge uv is the operation of replacing uv with a path
u,w, v through a new vertex w.

The Barnette and Grünbaum operations (BG-operations) consist of the following
operations on a graph:

(i) add an edge xy (possibly a parallel edge),
(ii) subdivide an edge ab by a vertex x and add an edge xy for y 6∈ {a, b},
(iii) subdivide two distinct, non-parallel edges by vertices x and y, respectively, and

add the edge xy.

The following result was proven by Barnette and Grünbaum [1].

Theorem 2.6 ([1]). Applying a BG-operation on a 3-connected graph generates
a 3-connected graph.

Lemma 2.7. There are infinitely many simple 3-connected planar graphs with
δ(G) = 4, ∆(G) = 5, and χ′(G) = 6.
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Proof. First we take a plane drawing of a simple 3-connected 5-regular planar graph
H on 2n vertices. By Euler’s formula, |V (H)| − |E(H)|+ |F (H)| = 2. Using the Hand-
shaking Lemma ∑

v∈V (H)

deg(v) = 2|E(H)| =
∑

f∈F (H)

deg(f),

we have ∑

v∈V (H)

(deg(v)− 4) +
∑

f∈F (H)

(deg(f)− 4) = −8.

Therefore, H has a face f of size three. Let e1, e2, e3 be the edges incident with f .
Now we subdivide the edges e1 and e2 with vertices v1 and v2, and add the edge v1v2.
After that we subdivide the edge e3 with vertex v3 and add the edge v2v3. Finally,
we add the edge v1v3. The obtained graph G is simple, planar, and 3-connected, since
it was obtained from H using BG-operations. The graph G has 2n+ 3 vertices and
5n+ 6 edges, therefore it is of class two by Corollary 2.3 (with k = n+ 1).

2.3. SIMPLE 3-CONNECTED PLANAR GRAPHS
WITH δ(G) = 5, ∆(G) = 5, AND χ′(G) = 6

In the proof of Lemma 2.7 we constructed simple 3-connected plane graphs with
δ(G) = 4, ∆(G) = 5, and χ′(G) = 6 such that each of them contains only three vertices
of degree four, moreover, these three vertices form a face f of size three. Since any two
planar embeddings of a simple 3-connected planar graph are equivalent (see [2, p. 267]),
we can assume that f is the outer face. We will use the notation 4-graph for any such
graph.

Lemma 2.8. Let G be a simple 3-connected plane graph with a face f of size three.
Let H be a 4-graph. If we glue G and H by identifying the boundary of f with the
boundary of the outer face of H, then the obtained graph is also 3-connected.

Proof. This follows from the fact that such a gluing of two simple 3-connected plane
graphs corresponds to a connected sum of two 3-dimensional polytopes (see [8, p. 29]).
Steinitz [21] proved that a planar graph is simple and 3-connected if and only if it is
the edge graph of a 3-dimensional polytope.

Lemma 2.9. There are infinitely many simple 3-connected planar graphs with
δ(G) = 5, ∆(G) = 5, and χ′(G) = 6.

Proof. First we take a plane drawing of a simple 3-connected 3-regular planar graph.
Then, for each vertex v we subdivide two incident edges by vertices v1 and v2 and add
the edge v1v2. In such a way we obtain a new plane graph H which is also 3-connected
(see Theorem 2.6). Now we glue a 4-graph to each face of H of size three in order to
obtain a simple 5-regular plane graph G, see Figure 1 for illustration.

The chromatic index of G is five or six, by Vizing’s theorem. Since 4-graphs admit
no proper edge-coloring with five colors, we have χ′(G) = 6. From Lemma 2.8 it follows
that G is 3-connected.
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Fig. 1. An operation used to construct simple 3-connected 5-regular plane graphs from
simple 3-connected 3-regular plane graphs.

Note that using the construction described in the proof of Lemma 2.9, we can obtain
simple 3-connected planar graphs of class two with maximum degree five and minimum
degree δ for every δ ∈ {3, 4, 5}. First we take a simple 3-connected planar graph with
vertices of degree 3 and δ (such graphs can be obtain from the complete graph on
four vertices using BG-operations) and then replace some vertices of degree three
by 4-graphs.

3. DISCUSSION

The present paper brings a contribution to the theory of proper edge-colorings and
also to the theory of facial edge-colorings of plane graphs. We constructed simple
3-connected planar graphs with maximum degree five and chromatic index six. The ex-
istence of such graphs affirm a conjecture of Jendroľ about facial rainbow edge-coloring:
There are simple 3-connected plane graphs G with L(G) = 4 and erb(G) = L(G) + 2.
We recommend to the reader recent survey papers about (facial) edge-colorings [4–6].
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