Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Voice controlled management systems are based on speech recognition techniques. The use of such systems in combat aircraft is complex due to a number of critical factors which affect the accuracy of speech recognition, such as high level of ambient noise and vibration, use of oxygen masks, serious psycho-physical stress of speakers, etc. One of the specificity of the oxygen mask application is overpressure breathing. The results of the simulations presented in this paper show that the presence of overpressure on the order of 1000 Pa in the vocal tract has a significant influence on the first two formant frequencies. The formants discrimination field is significantly reduced when oxygen mask is used, influencing both perceptive and automatic discrimination of spoken vowels.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
177--181
Opis fizyczny
Bibliogr. 12 poz., wykr.
Twórcy
autor
- Life Activities Advancement Center, Belgrade, Serbia
autor
- University of Belgrade, School of Electrical Engineering, Belgrade, Serbia
autor
- University of Belgrade, School of Electrical Engineering, Belgrade, Serbia
autor
- University of Belgrade, School of Electrical Engineering, Belgrade, Serbia
Bibliografia
- 1. Badin P., Fant G. (1984), Notes on vocal tract computation, STL-QPSR, 25 (2-3): 53-108, Speech Transmission Laboratory, Royal Institute of Technology, Stockholm.
- 2. Ernsting J. (1966), Some effects of raised intrapulmonary pressure in man, AGARD Monograph, AGARDOGRAPH 106, Technivision Ltd., Maidenhead.
- 3. Fant G. (1970), Acoustic Theory of Speech Production, Mouton, The Hague.
- 4. C (1972), Speech Analysis, Synthesis, and Perception, Springer-Verlag, New York.
- 5. Morse P. M. (1986), Vibration and Sound, Ed. By Acoustical Society of America.
- 6. Morse P. M., Ingard K. U. (1968), Theoretical Acoustics, McGraw-Hill, New York.
- 7. Rainford D., Gradwell D. [Eds] (2006), Ernsting’s Aviation Medicine, 4th ed., Hodder Arnold, London.
- 8. South A. (2001), A model of vowel production under positive pressure breathing, Proceedings of EUROSPEECH-2001, pp. 1515-1518, Aalborg, Denmark.
- 9. Stevens K. N., Kasowski S., Fant G. (1953), An electrical analog of the vocal tract, The Journal of the Acoustical Society of America, 25 (4): 734-742, doi: 10.1121/1.1907169.
- 10. Svirsky M., Stevens K., Matthies M., Manzella J., Perkell J., Wilhelms-Tricarico R. (1997), Tongue surface displacement during bilabial stops, The Journal of the Acoustical Society of America, 102 (1): 562-571, doi: 10.1121/1.419729.
- 11. Vojnović M., Mijić M. (2005), An improved model for the acoustic radiation impedance of the mouth based on an equivalent electrical network, Applied Acoustics, 66 (5): 481-499, doi: 10.1016/j.apacoust.2004.09.002.
- 12. Wakita H., Fant G. (1978), Toward a better vocal tract model, STL-QPSR, 19 (1): 929, Speech Transmission Laboratory, Royal Institute of Technology, Stockholm.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3716b32e-a794-4699-a544-4ea7fe49a249