PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the Biogas Yield of White Mustard (Sinapis alba) Cultivated as Intercrops

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Popularization of intercrops in agriculture, resulting in an increased sequestration of carbon dioxide may bring additional benefits, becoming a source of biomass constituting a feedstock for biogas production. The residue formed in the course of biogas production, i.e. digestate, is also an alternative or a valuable supplement for mineral fertilizers necessary to maintain the proper condition of the agricultural soil. Therefore, the application of substrates from the intecrop biomass enables to improve the quality of soil, without sacrificing the main crop, by preventing the leaching of nutrients; it also reduces the risk of plant diseases, has a significant influence on diversification of energy sources, and contributes to solving the issue of excessive greenhouse gases emission. The aim of the work was to investigate the biogas and methanogenic potential of white mustard (Sinapis alba) and estimate the biogas efficiency of its biomass (the above-ground part) per hectare of arable land. The studies were conducted on the plants cultivated on experimental plots located in Emilianów and Wierzbica (Lubelskie Voivoideship). The cultivation of plants was conducted simultaneously, as stubble crop. The studies indicated a significant quantitative and qualitative differentiation of plant biomass collected from particular plots. The C:N ratio, which constitutes the basic factors governing the correct course of methane fermentation, in the case of the shoot biomass of the considered plants, ranged from 13.5:1 to 19.9:1, depending on the location. The biomass efficiency of mustard biomass ranged from 0.6 t d.m. ha-1 to 0.8 t d.m. ha-1, whereas its biogas potential amounted to 350–440 m3 t-1 d.m. Therefore, one hectare of intercrop mustard yields 264–280 m3 of biogas and the produced digestate can be recirculated to the soil, increasing the amount of biogenic substances and enriching it with humic substances.
Rocznik
Strony
67--72
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Lublin University of Technology, Faculty of Environmental Engineering, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Environmental Engineering, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. EBA Statistical Report, 2016. Biomethane plants in Europe in 2015
  • 2. Dehkhoda A., 2008. Concentrating lignocellulosic hydrolysate by evaporation and its fermentation by repeated fed batch using flocculating Saccharomyces cerevisiae. Master thesis, Industrial Biotechnology Boras University and SEKAB E-Technology, Sweden.
  • 3. Salces B.M.., Ahring B.K., Uellendahl H. 2013. Catch crops as an alternative biomass feedstock for biogas plants. Proceedings of the International Anaerobic Digestion Symposium on “Dry Fermentation, Substrate Treatment and Digestate Treatment” within the BioGasWorld 2013.
  • 4. Molinuevo-Salces, R. Fernández-Varela, H. Uellendahl. 2014. Key factors influencing the potential of catch crops for methane production. Environ. Technol., 35, 1685–1694.
  • 5. Petersson A., Wellinger A. 2009. Biogas upgrading technologies–developments and innovations, IEA Bioenergy
  • 6. Seppäla M., Paavola T., Lehtomaki A., Pakarien, O., Rintala, J. 2008. Biogas from energy crops-optimal pre-treatments and storage, co-digestion and energy balance in boreal conditions. Water Science and Technology, 58(9), 1857–1863.
  • 7. Fröschle, B., Heiermann, M., Lebuhn, M., Messelhäusser, U., Plöchl, M.. 2015. Hygiene and sanitation in biogas plants. In: Guebitz, G.M., Bauer, A., Bochmann, G., Gronauer, A., Weiss, S. (Eds.), Biogas Science and Technology, Springer International Publishing, 151, 63–99.
  • 8. Pawłowska, M., Rożej, A., Stępniewski, W. 2011. The effect of bed properties on methane removal in an aerated biofilter – model studies, Waste Manag., 31, 903–913.
  • 9. Szafranek-Nakonieczna, A., Zheng, Y., Słowakiewicz, M., Pytlak, A., Polakowski, C., Kubaczyński, A., Bieganowski, A., Banach, A., Wolińska, A., Stepniewska, Z. 2018. Methanogenic potential of lignite in Poland., Int. J. Coal Geol., 196, 201–210.
  • 10. Lalak, J., Kasprzycka, A., Martyniak, D., Tys, J. 2016. Effect of biological pretreatment of Agropyron elongatum ‘BAMAR’ on biogas production by anaerobic digestion. Bioresour. Technol., 200, 194–200.
  • 11. Oleszek, M., Matyka, M. 2017. Nitrogen fertilization level and cutting affected lignocellulosic crops properties important for biogas production. Bioresources, 12, 8565–8580.
  • 12. Kasprzycka, A., Kuna, J. 2018. Methodical aspects of biogas production in small-volumem bioreactors in laboratory investigations. Energies, 11, 1378. https://doi.org/10.3390/en11061378.
  • 13. Mao C., Feng Y., Wang X., Ren G. 2015. Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555.
  • 14. Roy R.N., Finck A., Blair G.J., Tandon H.L.S. 2006. Plant nutrition for food security: a guide for integrated nutrient management. FAO Fertilizer and Plant Nutrition Bulletin. Rome: Food and Agriculture Organization of the United Nations., 368, Report No:16.
  • 15. Taherzadeh M.J., Karimi K. 2007. Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources, 2, 707–738.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-370d5669-173c-481e-a600-c4cba40af3c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.