PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The User-Preferred Optimal Flight Parameters in an Active Navigational System in a Multi-Alternative Situation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Preferencje pilota-operatora przy optymalnym wyborze ze zbioru wielu alternatyw parametrów lotu w aktywnym systemie nawigacyjnym
Języki publikacji
EN
Abstrakty
EN
The goal of this paper is to investigate the influence of the objectively existing effectiveness functions of an aircraft control system upon the control and managerial decision making process in the framework of the subjective entropy maximum principle. The subjective analysis theory entropy paradigm makes it possible to consider the aircraft control system based upon personal preferences as an active system governed by an individual (active element of the control system) with the help of her/his individual subjective preferences optimal distributions obtained in conditions of operational multi-alternativeness and those operational alternatives the active system active element’s individual subjective preferences uncertainty. The described approach takes into account the simple two-alternative operational situation in regards with the objectively existing effectiveness functions, related to the aircraft control system, in the view of a controlled parameter and a combination of it with its rate as the ratio. The obtained expressions for the objective functional extremal functions of the effectiveness and preferences, as well as the subjective entropy of the alternatives preferences, illustrated in diagrams visualize the situation and allow taking a good choice. The ideas of the required proper governing, managing, and control methods choice optimization with respect to only 2 alternative objective effectiveness functions arguments might be simple; nevertheless, increasing the number of parameters and further complication of the problem setting will not change the principle of the problem solution.
PL
Celem tej publikacji jest zbadanie wpływu obiektywnie istniejących funkcji skuteczności systemu kontroli statku powietrznego na proces kontroli i podejmowania decyzji zarządczych w ramach subiektywnej zasady maksymalnej entropii. Paradygmat entropii teorii subiektywnej umożliwia rozważenie systemu sterowania samolotem opartego na osobistych preferencjach jako systemu aktywnego zarządzanego przez jednostkę (aktywny element systemu sterowania) za pomocą jej indywidualnych preferencji subiektywnych, optymalnych rozkładów uzyskanych w warunkach operacyjnej multi-alternatywności i operacyjnych alternatyw niepewności subiektywnych indywidualnych preferencji elementu aktywnego systemu. Opisane podejście uwzględnia proste dwie alternatywne sytuacje operacyjne w odniesieniu do obiektywnie istniejących funkcji efektywności związanych z systemem sterowania statkiem powietrznym w świetle kontrolowanego parametru i jego kombinacji Uzyskane wyrażenia dla obiektywnych funkcjonalnych ekstremalnych funkcji skuteczności i preferencji, a także subiektywna entropia preferencji alternatyw, zilustrowane na schematach, pokazują sytuację i pozwalają na dokonanie dobrego wyboru. Pomysły dotyczące wymaganej właściwej optymalizacji metod zarządzania i kontroli w odniesieniu do tylko dwóch alternatywnych argumentów funkcji efektywności celu mogą być proste – niemniej jednak zwiększenie liczby parametrów i dalsze komplikowanie problemu nie zmieni zasady rozwiązania.
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 35 poz., rys., wzory
Twórcy
  • National Aviation University, Aerospace Faculty, Kosmonavta Komarova Avenue, Kyiv, 03058, Ukraine
Bibliografia
  • [1] Kasianov, V., 2013, Subjective entropy of preferences. Subjective analysis, Institute of Aviation, Warsaw, Poland, ISBN 978-83-63539-08-5.
  • [2] Kasjanov, V. and Szafran, K., 2015, ”Some hybrid models of subjective analysis in the theory of active systems”, Transactions of the Institute of Aviation, 3(240), pp. 27-31. 10.5604/05096669.1194963
  • [3] Pagowski, Z. T. and Szafran, K., 2014, ”Ground effect inter-modal fast sea transport”, The International Journal on Marine Navigation and Safety of Sea Transportation, 8(2), pp. 317-320. 10.12716/1001.08.02.18
  • [4] Szafran K., 2014, ”Flight safety - the principle of maximum entropy,” Safety on land, sea and air in the 21st century, 1, pp. 247-251, ISBN 978-83-61520-02-3, (in Polish).
  • [5] Szafran, K. and Kramarski, I., 2015, ”Safety of navigation on the approaches to the ports of the republic of Poland on the basis of the radar system on the aerostat platform”, International Journal on Marine Navigation and Safety of Sea Transportation, 9(1), pp. 129-34. 10.12716/1001.09.01.16
  • [6] Solomentsev, O., Zaliskyi, M. and Zuiev, O., 2016, “Estimation of quality parameters in the radio flight support operational system,” Aviation, 20(3), pp. 123-128.
  • [7] Shmelova, T., Sikirda, Y., Rizun, N., Salem, A.-B. M. and Kovalyov, Y. N., 2017, Socio-Technical Decision Support in Air Navigation Systems: Emerging Research and Opportunities, International Publisher of Progressive Information Science and Technology Research, Pennsylvania, USA.
  • [8] Szafran, K., 2014, ”Traction vehicle operator safety – laboratory dynamic”, Logistyka, 6, pp. 192-197, (in Polish).
  • [9] Krzysztofik, I. and Koruba, Z., 2014, ”Mathematical model of movement of the observation and tracking head of an unmanned aerial vehicle performing ground target search and tracking”, Journal of Applied Mathematics, Special Issue (2014). 10.1155/2014/934250.
  • [10] Kaniewski, P. and Kraszewski, T., 2018, “Drone-based system for localization of people inside buildings,” in Proceedings of the IEEE 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2018), S1: Radar systems, satellite communication, navigation, positioning systems, monitoring, pp. 178-185, Ieee, Lviv-Slavske, Ukraine.
  • [11] Kelner, J. M., Uljasz, B. and Nowosielski, L., 2018, “BER measurements in the evaluation of operation correctness of VSAT modem traffic interfaces,” in Proceedings of the IEEE 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2018), S1: Radar systems, satellite communication, navigation, positioning systems, monitoring, pp. 161-165, Ieee, Lviv-Slavske, Ukraine.
  • [12] Łabowski, M. and Kaniewski, P., 2018, “A Method of Swath Calculation for Side-looking Airborne Radar,” in Proceedings of the IEEE 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2018), S1: Radar systems, satellite communication, navigation, positioning systems, monitoring, pp. 166-177, Ieee, Lviv-Slavske, Ukraine.
  • [13] Matuszewski, J., 2018, “Radar signal identification using a neural network and pattern recognition methods,” in Proceedings of the IEEE 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2018), S1: Radar systems, satellite communication, navigation, positioning systems, monitoring, pp. 249-253, IEEE, Lviv-Slavske, Ukraine, February 2018.
  • [14] Konatowski, S. and Pawłowski, P., 2018, “Ant Colony Optimization algorithm for UAV path planning,” in Proceedings of the IEEE 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2018), S2: Information systems and technologies, computer-aided design, pp. 146-151, Ieee, Lviv-Slavske, Ukraine, February 2018.
  • [15] Konatowski, S. and Gołgowski, M., 2018, “Road surface hazard warning system for vehicle drivers,” in Proceedings of the IEEE 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2018), S4: electronics, photonics and innovative optical technologies: systems and devices, micro- and nanotechnologies, pp. 145-149, Ieee, Lviv-Slavske, Ukraine, February 2018.
  • [16] Ma F. C., Lv, P. H. and Ye, M., 2012, Study on Global Science and Social Science entropy Research Trend, 2012 IEEE fifth international conference on advanced computational intelligence (ICACI), October 18-20, Nanjing, Jiangsu, China, pp. 238-242.
  • [17] Jaynes, E. T., 1957, ”Information theory and statistical mechanics”, Physical review, 106(4), pp. 620-630.
  • [18] Jaynes, E. E. T., 1957, ”Information theory and statistical mechanics. II”, Physical review, 108(2), pp. 171-190.
  • [19] Jaynes, E. T., 1982, ”On the rationale of maximum-entropy methods”, Proceedings of the IEEE, Vol. 70, pp. 939-952.
  • [20] Zamfirescu, C. B., Duta, L. and Iantovics, B., 2010, ”On investigating the cognitive complexity of designing the group decision process”, Studies in Informatics and Control 19(3), pp. 263-270.
  • [21] Goncharenko, A. V., 2018, ”Airworthiness support measures analogy to the prospective roundabouts alternatives: theoretical aspects,” Journal of Advanced Transportation, Article ID 9370597. 10.1155/2018/9370597.
  • [22] Goncharenko, A. V., 2018, ”A multi-optional hybrid functions entropy as a tool for transportation means repair optimal periodicity determination,” Aviation, 22(2), pp. 60-66. 10.3846/aviation.2018.5930.
  • [23] Goncharenko, A. V., 2018, ”Development of a theoretical approach to the conditional optimization of aircraft maintenance preference uncertainty,” Aviation, 22(2), pp. 40-44. 10.3846/aviation.2018.5929
  • [24] Goncharenko, A. V., 2018, ”Optimal controlling path determination with the help of hybrid optional functions distributions,” Radio electronics, Computer Science, Control, 1(44), pp. 149-158. 10.15588/1607-3274-2018-1-17.
  • [25] Goncharenko, A. V., 2018, ”Aeronautical and aerospace materials and structures damages to failures: theoretical concepts,” International Journal of Aerospace engineering, Article ID 4126085. 10.1155/2018/4126085.
  • [26] Goncharenko, A. V., 2017, ”Aircraft operation depending upon the uncertainty of maintenance alternatives,” Aviation, (21)4, pp. 126-131. 10.3846/16487788.2017.1415227.
  • [27] Goncharenko, A. V., 2017, ”Optimal UAV maintenance periodicity obtained on the multi-optional basis,” Proceedings of the IEEE 4th International Conference on Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), pp. 65-68, Ieee, Kyiv, Ukraine, October 2017.
  • [28] Goncharenko, A. V., 2019, ”Relative pseudo-entropy functions and variation model theoretically adjusted to an activity splitting,” Proceedings of the 9th International Conference on Advanced Computer Information Technologies (ACIT’2019), pp. 52-55, Ceske Budejovice, Czech Republic, June 2019.
  • [29] Goncharenko, A. V., 2018, ”Active systems communicational control assessment in multialternative navigational situations,” in Proceedings of the IEEE 5th International Conference on Methods and Systems of Navigation and Motion Control 4MSNMC5, pp. 254-257, IEEE, Kyiv, Ukraine, October 2018.
  • [30] Goncharenko, A. V., 2018, ”Multi-optional hybrid effectiveness functions optimality doctrine for maintenance purposes,” Proceedings of the IEEE 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2018), S8: Quality, reliability and diagnostics of electronic and information systems and devices, pp. 771-775, IEEE, Lviv-Slavske, Ukraine, February 2018.
  • [31] Goncharenko, A. V., 2018, ”An entropy model of the aircraft gas turbine engine blades restoration method choice,” Proceedings of the International Conference on Advanced Computer Information Technologies 4ACIT’20185, pp. 2-5, Ceske Budejovice, Czech Republic, June 2018.
  • [32] Goncharenko, A. V., 2016, ”Several models of artificial intelligence elements for aircraft control,” Proceedings of the IEEE 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC), pp. 224-227, IEEE, Kyiv, Ukraine, October 2016.
  • [33] Goncharenko, A. V., 2015, ”Applicable aspects of alternative UAV operation,” Proceedings of the IEEE 3rd International Conference on Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), pp. 316-319, IEEE, Kyiv, Ukraine, October 2015.
  • [34] Goncharenko, A. V., 2014, ”Navigational alternatives, their control and subjective entropy of individual preferences,” in Proceedings of the IEEE 3rd International Conference on Methods and Systems of Navigation and Motion Control 4MSNMC5, pp. 99-103, IEEE, Kyiv, Ukraine, October 2014.
  • [35] Goncharenko, A. V., 2013, ”expediency of unmanned air vehicles application in the framework of subjective analysis,” Proceedings of the IEEE 2nd International Conference on Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), pp. 129-133, IEEE, Kyiv, Ukraine, October 2013.
Uwagi
EN
1. The data supporting the results reported in the published article can be found in the references listed and wherever the approach is applicable. It is described in the paper. The research and publication of the article is not funded by any financially supporting body.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-370bb90a-9d94-4c24-ab64-7170a2192b39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.