PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conditions for increasing the recognition of degradation in thermal-flow diagnostics, taking into account environmental legal aspects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ever-increasing demand for electricity and the need for conventional sources to cooperate with renewable ones generates the need to increase the efficiency and safety of the generation sources. Therefore, it is necessary to find a way to operate existing facilities more efficiently with full detection of emerging faults. These are the requirements of Polish, European and International law, which demands that energy facilities operate with the highest efficiency and meet a number of restrictive requirements. In order to improve the operation of steam power plants of electric generating stations, thermal-fluid diagnostics have been traditionally used, and in this paper a three-hull steam turbine, having a high-pressure, a medium-pressure and a low-pressure part, has been selected for analysis. The turbine class is of the order of 200 MW electric. Genetic algorithms (GA) were used in the process of creating the diagnostic model. So far, they have been used for diagnostic purposes in gas turbines, and no work has been found in the literature using GA for the diagnostic process of such complex objects as steam turbines located in professional manufacturing facilities. The use of genetic algorithms allowed rapid acquisition of global extremes, that is efficiency and power of the unit. The result of the work undertaken is the possibility to carry out a full diagnostic process, meaning detection, localization and identification of single and double degradations. In this way 100 % of the main faults are found, but there are sometimes additional ones, and these are not perfectly identified especially for single time detection. Thus, the results showed that with a very high success rate the simulated damage to the geometrical elements of the steam turbine under study is found.
Rocznik
Strony
33--48
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
  • Gdańsk University of Technology Faculty of Mechanical Engineering and Ship Technology, Narutowicza 11/12; 80-233 Gdańsk, Poland
autor
  • Gdańsk University of Technology Faculty of Mechanical Engineering and Ship Technology, Narutowicza 11/12; 80-233 Gdańsk, Poland
  • Nicolaus Copernicus University, Faculty of Law and Administratorom, Department of Criminal Law, Władysława Bojarskiego 3, 87-100 Toruń, Poland
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Gdańsk University of Technology Faculty of Mechanical Engineering and Ship Technology, Narutowicza 11/12; 80-233 Gdańsk, Poland
Bibliografia
  • [1] Gutierrez-Arriaga CG, Serna-Gonzalez M, Ponce-Ortega JM, El-Halwagi MM. Multiobjective optimization of steam power plants for sustainable generation of electricity. Clean Technol Environ Policy 2013; 15:5 51-66. https://doi.org/10.1007 /s10098-012-0556-4.
  • [2] Javadi M, Jafari N, Khalili M, Jabery R. 4E analysis of three different configurations of a combined cycle power plant integrated with a solar power tower system. Sustain Energy Technol Assessments 2021;48:101599. https://doi.org/10.1016/j.seta.2021.101599.
  • [3] Dzikuc M, Szufa S, Adamczyk J, Dzikuc M. The Potential of Low-Carbon Development of the Polish Economy. Hradec Econ Days 2021;1. https://doi.org/10.36689/uhk/hed/2021-01-015.
  • [4] Sewastianik S, Gajewski A. Energetic and Ecologic Heat Pumps Evaluation in Poland. Energies 2020:1-17.
  • [5] Manowska A, Osadnik KT. Economic and social aspects of restructuring Polish coal mining: Focusing on Poland and the EU. Resour Policy 2017;52:192-200. https://doi.org/10.1016/j.resourpol.2017.02.006.
  • [6] Ziółkowski P, Głuch S, Ziółkowski PJ, Badur J. Compact High Efficiency and Zero-Emission Gas-Fired Power Plant with Oxy-Combustion and Carbon Capture. Energies 2022;15:2590. https://doi.org/10.3390/enl5072590.
  • [7] Madejski P, Zymelka P. Calculation methods of steam boiler operation factors under varying operating conditions with the use of computational thermodynamic modeling. Energy 2020;197. https://doi.org/10.1016/j.energy.2020.117221.
  • [8] Jonek-Kowalska I. Consolidation as a risk management method in the lifecycle of a mining company: A novel methodological approach and evidence from the coal industry in Poland. Resour Policy 2019;60:169-77. https://doi.org/10.1016/j.resourpol.2018.12.014.
  • [9] Ziółkowski P, Szewczuk-Krypa N, Butterweck A, Stajnke M, Głuch S, Drosińska-Komor M, et al. Comprehensive thermodynamic analysis of steam storage in a steam cycle in a different regime of work: A zero-dimensional and three-dimensional approach. J Energy Resour Technol 2021;143:1-27. https://doi.org/10.1115/1.4052249.
  • [10] Szewczuk-Krypa N, Grzymkowska A, Głuch J. Comparative Analysis of Thermodynamic Cycles of Selected Nuclear Ship Power Plants with High-Temperature Helium-Cooled Nuclear Reactor. Polish Marit Res 2018;25:218-24. https://doi.org/10.2478/pomr-2018-0045.
  • [11] Yang T, Wang W, Zeng D, Liu J, Cui C. Closed-loop optimization control on fan speed of aircooled steam condenser units for energy saving and rapid load regulation. Energy 2017; 135:394-404. https://doi.org/10.1016/j.energy.2017.06.142.
  • [12] UE i porozumienie paryskie: w stronę neutralności klimatycznej n.d. www.europarl.europa.eu/news/pl/headlines/society/20191115ST066603/ue-iporozumienie-paryskie-w-strone-neutralnosci-klimatycznej (accessed March 30, 2023).
  • [13] OJ L 282, 19.10.2016, p.4 n.d. https://unfccc.int/process-and-meetings/the-paris-agreement (accessed March 30, 2023).
  • [14] Official Journal of the European Union, 19.10.2016, Council Decision (EU) 2016/1841 of 5 October 2016 on the conclusion, on behalf of the European Union, of the Paris Agreement adopted under the United Nations Framework Convention on Climate Change n.d. https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:32016Dl84l&from=EN (accessed March 30, 2023).
  • [15] Kyoto protocol n.d. https://eur-lex.europa.eu/legalcontent/PL/TXT/?uri=LEGISSUM:kyoto_protocol (accessed March 30, 2023).
  • [16] Council Decision (EU) 2016/1841 of 5 October 2016 on the conclusion, on behalf of the European Union, of the Paris Agreement adopted under the United Nations Framework Convention on Climate Change n.d. https://eur-lex.europa.eu/legalcontent/EN/TXT/HTML/?uri=CELEX:32016Dl84l&from=EN (accessed March 28, 2023).
  • [17] 2050 long-term strategy n.d. https://climate.ec.europa.eu/eu-action/climate-strategiestargets/2050-long-term-strategy en (accessed March 29, 2023).
  • [18] OJ L 243, 9.7.2021, p.l n.d. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=OJ%3AL%3A2021%3A243%3ATOC (accessed March 28, 2023).
  • [19] OJ L 156 19.06.2018 p. 1, 26 n.d. https://eur-lex.europa.eu/legalcontent/PL/TXT/PDF/?uri=OJ:L:2018:156:FULL&from=PL (accessed March 29, 2023).
  • [20] OJ L 156, 19.6.2018, p. 26 n.d. https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32018R0842&from=EN (accessed March 30, 2023).
  • [21] Krajowy plan na rzecz energii i klimatu na lata 2021-2030 n.d. https://www.gov.pl/web/klimat/krajowy-plan-na-rzecz-energii-i-klimatu (accessed March 30, 2023).
  • [22] National Energy and Climate Plan for the years 2021-2030 n.d. https://www.gov.pl/web/klimat/national-energy-and-climate-plan-for-the-years-2021-2030 (accessed March 30, 2023).
  • [23] 2030 Climate Target Plan n.d. https://climate.ec.europa.eu/eu-action/european-greendeal/2030-climate-target-plan_en (accessed March 30, 2023).
  • [24] Draft document "Rozporządzenie Parlamentu Europejskiego i Rady w sprawie zmiany rozporządzenia (UE) 2019 / 631 n.d. https://data.consilium.europa.eu/doc/document/PE-66-2022-INIT/pl/pdf (accessed March 30, 2023).
  • [25] 'Fit for 55': Council adopts regulation on CO2 emissions for new cars and vans n.d. https://www.consilium.europa.eu/pl/press/press-releases/2023/03/28/fit-for-5 5-counciladopts-regulation-on-co2-emissions-for-new-cars-and-vans/ (accessed March 30, 2023).
  • [26] NDC Registry n.d. https://unfccc.int/NDCREG (accessed March 30, 2023).
  • [27] The update of the nationally determined contribution of the European Union and its Member States n.d. https://unfccc.int/sites/default/files/NDC/2022-06/EU_NDC_Submission_December 2020.pdf?fbclid=IwAR2-pO_OxDo_rYX6rt59EvyhTO_hdg_stmO59g4_nfHZRlgUjHDst8HAZMU (accessed March 30, 2023).
  • [28] Cempel C. Descriptive parameters and contradictions in TRIZ methodology for vibration condition monitoring of machines. Diagnostyka 2014;15:51-9.
  • [29] Głuch J. Fault detection in measuring systems of power plants. Polish Marit Res 2008;15:45-51. https://doi.org/10.2478/vl0012-007-0096-8.
  • [30] Głuch J, Ślęzak-Żołna J. Solving problems with patterns for heat and flow diagnostics dedicated for turbine power plants. Int Gas Turbine Inst Proc ASME Turbo Expo 2012, 2012;1:969-79.
  • [31] Flaszyński P, Pietrowicz M. Clocking and Potential Effects in Combustor - Turbine Stator Interactions. Aerospace 2021;8. https://doi.org/10.3390/aerospace8100285.
  • [32] Kowalczyk T, Głuch J, Ziółkowski P. Analysis of Possible Application of High-Temperature Nuclear Reactors to Contemporary Large-Output Steam Power Plants on Ships. Polish Marit Res 2016;23:32-41. https://doi.org/10.1515/pomr-2016-0018.
  • [33] Sławinski D, Ziolkowski P, Badur J. Thermal failure of a second rotor stage in heavy duty gas turbine. Eng Fail Anal 2020;115. https://doi.org/10.1016/j.engfailanal.2020.104672.
  • [34] Szewczuk-Krypa N, Drosińska-Komor M, Gluch J, Breńkacz Ł. Comparison analysis of selected nuclear power plants supplied with helium from high-temperature gas-cooled reactor. Polish Marit Res 2018;97:204-10. https://doi.org/10.2478/pomr-2018-0043.
  • [35] Gluch J. Selected problems of determining an efficient operation standard in contemporary heat-and-flow diagnostics. Polish Marit Res 2009;16:22-8.
  • [36] Breńkacz Ł, Żywica G, Drosińska-Komor M, Szewczuk-Krypa N. The Experimental Determination of Bearings Dynamic Coefficients in a Wide Range of Rotational Speeds, Taking into Account the Resonance and Hydrodynamic Instability. In: Awrejcewicz J., editor. Dyn. Syst. Appl., vol. 249, Cham: Springer International Publishing; 2018, p. 13-24. https://doi.org/10.1007/978-3-319-96601-4.
  • [37] Breńkacz Ł, Żywica G, Drosińska-Komor M. The Experimental Identification of the Dynamic Coefficients of two Hydrodynamic Journal Bearings Operating at Constant Rotational Speed and Under Nonlinear Conditions. Polish Marit Res 2017;24:108-15. https://doi.org/10.1515/pomr-2017-0142.
  • [38] Blaszczyk A, Gluch J, Gardzilewicz A. Operating and economic conditions of cooling water control for marine steam turbine condensers. Polish Marit Res 2011;18:48-54. https://doi.org/10.2478/vl0012-011-0017-8.
  • [39] Badur J, Ziółkowski P, Sławinski D, Kornet S. An approach for estimation of water wall degradation within pulverized-coal boilers. Energy 2015;92:142-52. https://doi.org/10.1016/j.energy.2015.04.061.
  • [40] Plis M, Rusinowski H. A mathematical model of an existing gas-steam combined heat and power plant for thermal diagnostic systems. Energy 2018;156:606-19. https://doi.org/10.1016/j.energy.2018.0 5.113.
  • [41] Kosowski K at al. Steam and Gas Turbines. Power Plants. Alstom, France-Switzerland-United Kingdom-Poland: 2007.
  • [42] Chen M, Quan Hu L, Tang H. An Approach for Optimal Measurements Selection on Gas Turbine Engine Fault Diagnosis. J Eng Gas Turbines Power 2015;137:071203. https://doi.org/10.1115/1.4029171.
  • [43] Ślęzak-Żołna J. On the application of the artificial neural network method to a neural simulator of steam turbine power plant. Polish Marit Res 2006;nr 1:16-20.
  • [44] Chang HH. Genetic algorithms and non-intrusive energy management system based economic dispatch for cogeneration units. Energy 2011;36:181-90. https://doi.org/10.1016/j.energy.2010.10.0 54.
  • [45] Mirhoseini MS, Boroomand M. Multi-objective optimization of hot steam injection variables to control wetness parameters of steam flow within nozzles. Energy 2017;141:1027-37. https://doi.org/10.1016/j.energy.2017.09.138.
  • [46] Douglas T, Big-Alabo A. A generic algorithm of sustainability (GAS) function for industrial complex steam turbine and utility system optimisation. Energy 2018;164:881-97. https://doi.org/10.1016/j.energy.2018.09.016.
  • [47] Ziółkowski P, Witanowski, Klonowicz P, Gluch S. Optimization of the Last Stage of Gas-Steam Turbine Using a Hybrid Method. 14th Eur Conf Turbomach Fluid Dyn Thermodyn ETC 2021 2021:1-15.
  • [48] Witanowski Ł, Breńkacz Ł, Szewczuk-Krypa N, Dorosińska-Komor M, Puchalski B. Comparable analysis of PID controller settings in order to ensure reliable operation of active foil bearings. Eksploat i Niezawodn Maint Reliab 2022;24:377-85. https://doi.org/10.17531/ ein.2022.2.19.
  • [49] Dominiczak K, Drosińska-Komor M, Rządkowski R, Głuch J. Optimisation of turbine shaft heating process under steam turbine run-up conditions. Arch Thermodyn 2020;41:255-68.https://doi.org/10.24425/ather.2020.135863.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3705dee2-d32b-44a7-93bf-525bc2e082c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.