PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion Damage Mechanisms of TiO2 Cold-Sprayed Coatings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cold spraying as a low-temperature coating deposition method is intended for thermally sensitive materials. Due to its precise temperature control, it limits the formation of structural defects, and can therefore be easily applied to spray corrosion protective coatings made from metal or metal-ceramic powders. However, the formation of pure ceramic coatings with the use of cold spraying is still not so common. Titanium dioxide is one of the most interesting ceramics due to its photocatalytic properties. Nevertheless, these types of coating materials usually work in a corrosion favoring humid atmosphere. In the presented paper, amorphous TiO2 powder was deposited onto aluminum alloys and steel substrates and then submitted to potentiodynamic corrosion tests in a 3.5 wt.% NaCl solution. The as-sprayed coating showed phase transition from amorphous TiO2 to anatase, and also revealed porosity. As a result, electrolytes penetrated the coating and caused undercoating corrosion in the tested environment of an aqueous NaCl solution. The analysis of the potentiodynamic curves showed that the presence of the coating decreased corrosion potential on both substrates. It arose from the mixed phases of TiO2, which consisted of photocathode - amorphous material and photoanode - crystalline anatase. The phase mixture induced the galvanic corrosion of metallic substrates in the presence of electrolytes. Moreover, pitting-like corrosion and coating delamination were detected in aluminium alloy and steel samples, respectively. Finally, the corrosion mechanism of the titanium dioxide coatings was characterized and described.
Twórcy
  • Wrocław University of Science and Technology, Department of Metal Forming, Welding and Metrology, 5 Lukasiewicza Str., 50-371 Wroclaw, Poland
  • Wrocław University of Science and Technology, Department of Metal Forming, Welding and Metrology, 5 Lukasiewicza Str., 50-371 Wroclaw, Poland
Bibliografia
  • [1] Y.-M. Sung, H.-J. Kim, Thin Solid Films 515, 4996-4999 (2007). DOI: https://doi.org/10.1016/j.tsf.2006.10.079
  • [2] K.M.P. Bandaranayake, M.K. Indika Senevirathna, P.M.G.M. Prasad Weligamuwa, K. Tennakone, Coordin. Chem. Rev. 248, 1277-1281 (2004). DOI: https://doi.org/10.1016/j.ccr.2004.03.024
  • [3] P. Navabpour, S. Ostovarpour, C. Tattershall, K. Cooke, P. Kelly, J. Verran, K. Whitehead, C. Hill, M. Raulio, O. Priha, Coatings. 4, 433-449 (2014). DOI: https://doi.org/10.3390/coatings4030433
  • [4] H.S. Song, Y.J. Yoo, G.J. Lee, K.S. Chang, Y.M. Song, J. Nanomater. 2017, e2738015 (2017). DOI: https://doi.org/10.1155/2017/2738015
  • [5] D.S. Hinczewski, M. Hinczewski, F.Z. Tepehan, G.G. Tepehan, Sol. Energ. Mat. Sol. C. 87, 181-196 (2005). DOI: https://doi.org/10.1016/j.solmat.2004.07.022
  • [6] Y. Liu, Y. Yang, J. Nanomater. 2016, e8123652 (2016). DOI: https://doi.org/10.1155/2016/8123652
  • [7] N. Akkurt, S. Pat, R. Mohammadigharehbagh, M. Özgür, U. Demirkol, A. Olkun, Ş. Korkmaz, J. Mater. Sci: Mater. Electron. 31, 9568-9578 (2020). DOI: https://doi.org/10.1007/s10854-020-03499-0
  • [8] W.-P. Tai, J.-H. Oh, Sensor. Actuat. B: Chem. 85, 154-157 (2002). DOI: https://doi.org/10.1016/S0925-4005(02)00074-6
  • [9] B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.-K. Suh, Mater. Charact. 58, 680-684 (2007). DOI: https://doi.org/10.1016/j.matchar.2006.11.007
  • [10] A. Shanaghi, A.R. Sabour, T. Shahrabi, M. Aliofkhazraee, Prot. Met. Phys. Chem. Surf. 45, 305-311 (2009). DOI: https://doi.org/10.1134/S2070205109030071
  • [11] S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Catal. Today. 147, 1-59 (2009). DOI: https://doi.org/10.1016/j.cattod.2009.06.018
  • [12] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Sci. Rep. 4, 4043 (2014). DOI: https://doi.org/10.1038/srep04043
  • [13] K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005). DOI: https://doi.org/10.1143/JJAP.44.8269
  • [14] L. Huang, J. Xu, X. Sun, C. Li, R. Xu, Y. Du, J. Ni, H. Cai, J. Li, Z. Hu, J. Zhang, J. Alloy. Compd. 735, 224-233 (2018). DOI: https://doi.org/10.1016/j.jallcom.2017.11.027
  • [15] N. Vodišek, A. Šuligoj, D. Korte, U. Lavrenčič Štangar, Materials 11, 1945 (2018). DOI: https://doi.org/10.3390/ma11101945
  • [16] Y. Doubi, B. Hartiti, L. Hicham, S. Fadili, A. Batan, M. Tahri, A. Belfhaili, P. Thevnin, Mater. Today: Proc. 30, 823-827, (2020). DOI: https://doi.org/10.1016/j.matpr.2020.04.186
  • [17] Z.G. Wu, Z.M. Ren, L. Li, L. Lv, Z. Chen, Sep. Purif. Technol. 251, 117328 (2020). DOI: https://doi.org/10.1016/j.seppur.2020.117328
  • [18] H. Nagasawa, J. Xu, M. Kanezashi, T. Tsuru, Mater. Lett. 228, 479-481 (2018). DOI: https://doi.org/10.1016/j.matlet.2018.06.053
  • [19] F.S. Al mashary, J.F. Felix, S.O. Ferreira, D. de Souza, Y.G. Gobato,J. Chauhan, N. Alexeeva, M. Henini, A.M. Albadri, A.Y. Alyamani, Mater. Sci. Eng: B. 259, 114578 (2020). DOI: https://doi.org/10.1016/j.mseb.2020.114578
  • [20] I. Jelovica Badovinac, R. Peter, A. Omerzu, K. Salamon, I. Šarić, A. Samaržija, M. Perčić, I. Kavre Piltaver, G. Ambrožić, M. Petravić, Thin Solid Films 709, 138215 (2020). DOI: https://doi.org/10.1016/j.tsf.2020.138215
  • [21] A.M. AL-Baradi, Results Phys. 17, 103109 (2020). DOI: doi. org/10.1016/j.rinp.2020.103109
  • [22] N. Vodišek, A. Šuligoj, D. Korte, U. Lavrenčič Štangar, Materials 11, 1945 (2018). DOI: https://doi.org/10.3390/ma11101945
  • [23] M. Gardon, J.M. Guilemany, J. Therm. Spray Techn. 23, 577–595 (2014). DOI: https://doi.org/10.1007/s11666-014-0066-5
  • [24] T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, T. Klassen, J. Therm. Spray Techn. 18, 794 (2009). DOI: https://doi.org/10.1007/s11666-009-9357-7
  • [25] H. Koivuluoto, A. Coleman, K. Murray, M. Kearns, P. Vuoristo, J. Therm. Spray Techn. 21, 1065-1075 (2012). DOI: https://doi.org/10.1007/s11666-012-9790-x
  • [26] A.R. Toibah, M. Sato, M. Yamada, M. Fukumoto, Mater. Manuf. Process. 31, 1527-1534 (2016). DOI: https://doi.org/10.1080/10426914.2015.1090587
  • [27] M. Winnicki, A. Baszczuk, M. Jasiorski, B. Borak, A. Małachowska, Surf. Coat. Technol. 371, 194-202 (2019). DOI: https://doi.org/10.1016/j.surfcoat.2018.09.057
  • [28] T.A. Rahim, K. Takahashi, M. Yamada, M. Fukumoto, Mater. Trans. 57, 1345-1350 (2016). DOI: https://doi.org/10.2320/matertrans.T-M2016817
  • [29] A. Baszczuk, M. Jasiorski, M. Winnicki, J. Therm. Spray Techn. 27, 1551-1562 (2018). DOI: https://doi.org/10.1007/s11666-018-0769-0
  • [30] R. Hazan, S. Sreekantan, R.B.S.M.N. Mydin, AIP Conference Proceedings 2068, 020013 (2019). DOI: https://doi.org/10.1063/1.5089312
  • [31] C. Liu, Y. Wang, M. Wang, W. Huang, P.K. Chu, Surf. Coat. Technol. 206, 63-67 (2011). DOI: https://doi.org/10.1016/j.surfcoat.2011.06.038
  • [32] M.V. Diamanti, F. Bolzoni, M. Ormellese, E.A. Pérez-Rosales, M.P. Pedeferri, Sci. Technol. 45, 428-434 (2010). DOI: https://doi.org/10.1179/147842208X373191
  • [33] J. Liu, Y. Lou, C. Zhang, S. Yin, H. Li, D. Sun, X. Sun, RSC Adv. 7, 43938-43949 (2017). DOI: https://doi.org/10.1039/C7RA06960J
  • [34] M. Morozova, P. Kluson, J. Krysa, M. Vesely, P. Dzik, O. Solcova, Procedia Engineer. 42, 573-580 (2012). DOI: https://doi.org/10.1016/j.proeng.2012.07.450
  • [35] Y.-S. Song, I.-G. Lee, S.N. Hong, B.-Y. Kim, K.H. Lee, D.Y. Lee, J. Mater. Sci. 41, 2059-2065 (2006). DOI: https://doi.org/10.1007/s10853-006-4506-6
  • [36] T.P.S. Sarao, H.S. Sidhu, H. Singh, Metall. Mater. Trans A. 43, 4365-4376 (2012). DOI: https://doi.org/10.1007/s11661-012-1175-8
  • [37] F.-L. Toma, C.C. Stahr, L.-M. Berger, S. Saaro, M. Herrmann, D. Deska, G. Michael, J. Therm. Spray Techn. 19, 137-147 (2010). DOI: https://doi.org/10.1007/s11666-009-9422-2
  • [38] O. Sengul, M. Kam, Int. J. Anal. Exp. Finite Elem. Anal. 7, 91-100 (2020). DOI: https://doi.org/10.26706/ijaefea.4.7.20200807
  • [39] A. Świerczyńska, J. Łabanowski, J. Michalska, D. Fydrych, Mater. Corros. 68 (10), 1037-1045 (2017). DOI: https://doi.org/10.1002/maco.201709418
  • [40] T. Zhang, X. Xu, Y. Li, X. Lv, Constr. Build. Mater. 277, 122298, (2021). DOI: https://doi.org/10.1016/j.conbuildmat.2021.122298
  • [41] S. Kato, K. Hattori, Y. Tanaka, Y. Miyazaki, G. Ishii, S. Koura, N. Negishi, Ceram. Int. 46 (11), 19285-19292 (2020). DOI: https://doi.org/10.1016/j.ceramint.2020.04.268
  • [42] O.I. Kalu, B. Subramanian, B.J. MacLean, G.C. Saha, Materialia 5, 100237 (2019). DOI: https://doi.org/10.1016/j.mtla.2019.100237
  • [43] S. Chang, X. Yang, Y. Sang, H. Liu, Chem-Asian J. 11 (17), 2352-2371 (2016). DOI: https://doi.org/10.1002/asia.201600363
  • [44] R. Yamanoglu, E. Fazakas, F. Ahnia, D. Alontseva, F. Khoshnaw, Adv. Mater. Sci. 21, 5-15 (2021). DOI: https://doi.org/10.2478/adms-2021-0007
  • [45] H.M.A. El-Lateef, M.M. Khalaf, J. Mol. Liq. 331, 115797 (2021). DOI: https://doi.org/10.1016/j.molliq.2021.115797
  • [46] A. Baszczuk, M. Jasiorski, B. Borak, J. Wódka, Mater. Sci.-Poland. 34, 691-702 (2016). DOI: https://doi.org/10.1515/msp-2016-0094
  • [47] H. Wang, B. Hou, J. Wang, Q. Wang, W. Li, J. Therm. Spray Techn. 17, 736-741 (2008). DOI: https://doi.org/10.1007/s11666-008-9256-3
  • [48] Y. Bu, J.-P. Ao, Green Energy & Envir. 2, 331-362 (2017). DOI: https://doi.org/10.1016/j.gee.2017.02.003
  • [49] R. Kumari, J.D. Majumdar, Appl. Surf. Sci. 420, 935-943 (2017). DOI: https://doi.org/10.1016/j.apsusc.2017.05.208 985
  • [50] N. Jamalullail, I.S. Mohamad, M.N. Norizan, N. Mahmed, Sol. St. Phen. 273, 146-153 (2018). DOI: https://doi.org/10.4028/www.scientific.net/ssp.273.146
  • [51] C.C. Mercado, M.E.L. Lubrin, H.A.J. Hernandez, R.A. Carubio, Int. J. Photoenergy 2019, 848740, (2019). DOI: https://doi.org/10.1155/2019/9848740
  • [52] Y.-S. Song, I.-G. Lee, S.N. Hong, B.-Y. Kim, K.H. Lee, D.Y. Lee, J. Mater. Sci. 41, 2059-2065 (2006). DOI: https://doi.org/10.1007/s10853-006-4506-6
  • [53] H.R. Bakhsheshi-Rad, M. Daroonparvar, M.A.M. Yajid, P. Kumar, M. Razzaghi, A.F. Ismail, S. Sharif, F. Berto, J. Mater, Eng. Perform. 30, 1356-1370, (2021). DOI: https://doi.org/10.1007/s11665-020-05333-4
  • [54] G.M. Treacy, C.B. Breslin, Electrochim. Acta 43 (12-13), 1715-1720 (1998). DOI: https://doi.org/10.1016/S0013-4686(97)00305-8
  • [55] J.H. Seo, J.H. Ryu, D.N. Lee, J. Electrochem. Soc. 150 (9), B433-B438 (2003). DOI: https://doi.org/10.1149/1.1596952
  • [56] E.V. Koroleva, G.E. Thompson, P. Skeldon, B. Noble, P. Roy, Soc. 463, 1729-1748 (2007). DOI: https://doi.org/10.1098/rspa.2007.1846
  • [57] U. Donatus, G.E. Thompson, J.A. Omotoyinbo, K.K. Alaneme, S. Aribo, O.G. Agbabiaka, T. Nonferr, Metal. Soc. 27 (1), 55-62 (2017). DOI: https://doi.org/10.1016/S1003-6326(17)60006-2
  • [58] X. Zhang, X. Zhou, T. Hashimoto, B. Liu, Mater. Charact. (130), 230-236 (2017). DOI: https://doi.org/10.1016/j.matchar.2017.06.022
  • [59] H. Begg, M. Riley, H. de Villiers Lovelock, J. Therm. Spray Techn. 25, 12-20 (2016). DOI: https://doi.org/10.1007/s11666-015-0324-1
  • [60] A. Sabard, P. McNutt, H. Begg, T. Hussain, Surf. Coat. Technol. 385, 125367 (2020). DOI: https://doi.org/10.1016/j.surfcoat.2020.125367
  • [61] M. Rutkowska-Gorczyca, M. Podrez-Radziszewska, J. Kajtoch, Metall. Foundry Engineer. 35, 35-43 (2009). DOI: https://doi.org/10.7494/mafe.2009.35.1.35
  • [62] A. Srikanth, V. Bolleddu, Aust. J. Mech. Engineer. 2020, 1-22 (2020). DOI: https://doi.org/10.1080/14484846.2020.1794504
  • [63] K. Balani, T. Laha, A. Agarwal, J. Karthikeyan, N. Munroe, Surf. Coat. Technol. 195, 272-279 (2005). DOI: https://doi.org/10.1016/j.surfcoat.2004.06.028
  • [64] R. Huang, M. Sone, W. Ma, H. Fukanuma, Surf. Coat. Technol. 261, 278-288 (2015). DOI: https://doi.org/10.1016/j.surfcoat.2014.11.017
  • [65] M.M. Sharma, T.J. Eden, B.T. Golesich, J. Therm. Spray Techn. 24, 410-422 (2015). DOI: https://doi.org/10.1007/s11666-014-0175-1
  • [66] A. Yabuki, W. Urushihara, J. Kinugasa, K. Sugano, Mater. Corros. 62 (10), 907-912 (2011). DOI: doi.org/10.1002/maco.201005756
  • [67] S. Naghibi, A. Jamshidi, O. Torabi, R.E. Kahrizsangi, Int. J. Appl. Ceram. Tec. 11 (5), 901-910 (2013). DOI: https://doi.org/10.1111/ijac.12077
  • [68] S.M. Emarati, M. Mozammel, Ceram. Int. 46 (2), 1652-1661 (2020). DOI: https://doi.org/10.1016/j.ceramint.2019.09.137
  • [69] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Sci. Rep. 4, 4043 (2014). DOI: https://doi.org/10.1038/srep04043
  • [70] M. Kam, M. Demirtas, Surf. Rev. Lett. 28 (6), 2150041 (2021). DOI: https://doi.org/10.1142/S0218625X21500414
  • [71] N. Kubot, M. Ayabet, T. Fukuda, M. Akashi, MRS Online Proc. Lib. 458, 449-452 (1996). DOI: https://doi.org/10.1557/PROC-458-449.
Uwagi
1. This research was funded by Polish National Science Centre under the Contract No. 2016/23/D/ST8/00675 (Project title: The mechanism of joining submicron ceramic particles in cold spraying process).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3704a145-8c41-4c0e-8fe8-a4a50572bde8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.