PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of flotation and aggregation characteristics of muscovite particles through the extended DLVO theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the flotation and aggregation characteristics of muscovite mineral particles were determined as a function of dodecyl amine hydrochloride (DAH) concentration and correlated with the theoretically calculated “particle-particle” and “particle-bubble” interactions using extended DLVO theory. In this series of tests, the flotation and aggregation characteristics of the muscovite mineral were determined with micro-flotation and turbidity measurements, respectively. In addition to these analyses, surface tension measurements were carried out as a function of pH. Also, the zeta potential and contact angle measurements were also performed as a function of DAH concentration prior to the flotation and aggregation tests. The experimental studies showed that while almost minimum and maximum points of flotation and turbidity values were obtained up to a critical concentration of DAH as 6.10-6 mol/dm3, a significant increment was obtained following that concentration. Accordingly, while repulsive forces dominated the interactions up to that concentration, the attractive forces became more effective at further concentrations such as 2.10-5, 4.10-5, 8.10-5, and 1.10-4 mol/dm3 DAH concentrations for both “particle-particle” and ”particle-bubble” interactions. This in turn suggested that the determination of energy barrier heights between ”particle-particle” and ”particle bubble” may provide important insights into both flotation and aggregation characteristics of particles.
Rocznik
Strony
art. no. 151789
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
  • Istanbul Technical University, Mineral Processing Engineering Department, Istanbul, Turkey
autor
  • Adana Alparslan Türkeş, Mining Engineering Department, Adana, Turkey
  • Istanbul University-Cerrahpaşa, Mining Engineering Department, Istanbul, Turkey
  • Istanbul Technical University, Mineral Processing Engineering Department, Istanbul, Turkey
  • Harran University, Rectorate, Şanlıurfa, Turkey
Bibliografia
  • ASTM D7315-17. 2018. Standard Test Method for Determination of Turbidity Above 1 Turbidity Unit (TU) in Static Mode. ASTM International.
  • ATTARD, P., 1989. Long-range attraction between hydrophobic surfaces. J. Phys. Chem., 93, 6441-6444.
  • BOSTROM, M. WILLIAMS, D.R.M., NINHAM, B.W., 2001. Specific ion effects: Why DLVO theory fails for biology and colloid systems. Physical Review Letters, 87, 16, 1-4.
  • CHRISTENSON, H.K. and CLAESSON, P.M., 2001. Direct measurements of the force between hydrophobic surfaces in water. Advances in Colloid and Interface Science, 91, 391-436.
  • CORONA-ARROYO, M.A., LOPEZ-VALDIVIESO, A., LASKOWSKI, J.S., ENCINAS-OROPESA, A., 2015. Effect of frothers and dodecylamine on bubble size and gas holdup in a downflow column. Minerals Engineering, 81,109-115.
  • DRELICH, J., 1997. The effect of drop (bubble) size on contact angle at solid surfaces. The Journal of Adhesion, 63, 1-3, 31-51.
  • DRELICH, J. and BOWEN, P.K., 2015. Hydrophobic nano-asperities in control of energy barrier during particle-surface interactions. Surface Innovations, 3(3), 164-171.
  • ELMAHDY, A.M., MIRNEZAMI, M., FINCH, J., 2008. Zeta potential of air bubbles in presence of frothers. International Journal of Mineral Processing, 89(1-4), 40-43.
  • FUERSTENAU, D.W., 1957. Correlation of contact angle, adsorption density, zeta potentials and flotation rate. AIME Transactions, 208, 1365-1367.
  • GAO, Y., EVANS, G.M., WANLESS, E.J., MORENO-ATANASIO, R., 2017. DEM modelling of particle-bubble capture through extended DLVO theory. Colloids and Surfaces A, 529, 876-885.
  • GUVEN, O., CELIK, M.S., DRELICH, J.W., 2015. Flotation of methylated roughened glass particles and analysis of particle-bubble energy barrier. Minerals Engineering, 79, 125-132.
  • GUVEN, O., CELIK, M.S., 2016. Interplay of particle shape and surface roughness to reach maximum flotation efficiencies depending on collector concentration. Mineral Processing and Extractive Metallurgy Review, 37, 412-417.
  • GUVEN, O., KAYMAKOGLU, B., EHSANI, A., HASSANZADEH, A., SIVRIKAYA, O., 2022. Effects of grinding time on morphology and collectorless flotation of coal particles. Powder Technology, 399, 117010.
  • GRASSO, D., SUBRAMANIAM, K., BUTKUS, M., STREVETT, K., BERGENDAHL, J., 2002. A review of non-DLVO interactions in environmental colloidal systems. Re/Views in Environmental Science & Bio/Technology, 1, 17–38.
  • HOEK, E.M.V., BHATTACHARJEE, S., ELIMELECH, M., 2003. Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir, 19, 4836-4847.
  • ISRAELACHVILI, J.N. and ADAMS, G.E., 1978. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. Journal of the Chemical Society, Faraday Trans, 74, 975–1001.
  • KARAGUZEL, C., CAN, M.F., SONMEZ, E., CELIK, M.S., 2005. Effect of electrolyte on surface free energy components of feldspar minerals using thin-layer wicking method, Journal of Colloid and Interface Science, 285,1, 192-200.
  • KARAKAS, F. and HASSAS, B.V., 2016. Effect of surface roughness on interaction of particles in flotation. Physicochemical Problems of Mineral Processing, 52 (1), 19-35.
  • KOH, P.T.L., HAO, F.P, SMITH, L.K., CHAU, T.T., BRUCKARD, W.J., 2009. The effect of particle shape and hydrophobicity in flotation. International Journal of Mineral Processing, 93, 128-134.
  • KOWALCZUK, P.B., AKKAYA,C., ERGUN, M., JANICKI, M.J., SAHBAZ, O., DRZYMALA, J., 2017. Water contact angle on corresponding surfaces of freshly fractured fluorite, calcite and mica. Physicochemical Problems of Mineral Processing, 53, 1, 192-201.
  • LASKOWSKI, J.S., XU, Z., YOON, R.H., 1991. Energy barrier in particle-to-bubble attachment and its effect on flotation kinetics. In: Paper read at XVIIth International Mineral Processing Congress, at Dresden, Germany, September 23–28.
  • LASKOWSKI, J.S., YORDAN, J.L., YOON, R.H., 1989. Electrokinetic potential of microbubbles generated in aqueous solutions of weak electrolyte type surfactants. Langmuir, 5, 373-376.
  • LIU, J. and XU, Z., 2007. Role of flotation reagents in tuning colloidal forces for sphalerite-silica separation. Canadian Metallurgical Quarterly, 46 (3) 329-340.
  • MAO, L. 1998. Application of extended DLVO theory: Modelling of flotation and hydrophobicity of dodecane. Ph.D. Thesis, Virginia Polytechnic Institute and State University.
  • MARION, C., JORDENS, A., MCCARTHY, S., GRAMMATIKOPOULOS, T., 2015. An investigation into the flotation of muscovite with an amine collector and calcium lignin sulfonate depressant. Separation and Purification Technology, 149, 216-227.
  • MIKLAVCIC, S.J., 1995. Double layer forces between heterogeneous charged surfaces: The effect of net surface charge. The Journal of Chemical Physics, 103, 11, 4794-4806.
  • NOSRATI, A., ADDAI-MENSAH, J., SKINNER, W., 2012. Muscovite clay mineral particle interactions in aqueous media. Powder Technology. 219, 228–238.
  • OZDEMIR, O., KARAGUZEL, C., NGUYEN, A.V., CELIK, M.S., and MILLER, J.D., 2009. Contact angle and bubble attachment studies in the flotation of trona and other soluble carbonate salts. Minerals Engineering, 22(2), 168-175.
  • OZDEMIR, O., ERSOY, O.F., GUVEN, O. TURGUT, H. CINAR, M., CELIK, M.S., 2018. Improved flotation of heat treated lignite with saline solutions containing mono and multivalent ions. Physicochemical Problems of Mineral Processing, 54,4, 1070-1082.
  • PAZHIANUR, R. and YOON, R.H., 2003. Model for the origin of hydrophobic force. Minerals and Metallurgical Processing, 20(4), 178-184.
  • PINERES, J. and BARRAZA, J., 2011. Energy barrier of aggregates coal particle-bubble through the extended DLVO theory. International Journal of Mineral Processing, 100, 14-20.
  • PUGH, R.J., RUTLAND, M.W., MANEV, E., CLAESSON, P.M., 1996. Dodecylamine collector—pH effect on mica flotation and correlation with thin aqueous foam film and surface force measurements. International Journal of Mineral Processing, 46, 245–262.
  • RAI, B., SATHISH, TANWAR, P.J., PRADIP, K.S. MOON, FUERSTENAU, D.W., 2011. A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals. Journal of Colloid and Interface Science, 362, 510–516.
  • RAO, K.H., ANTTI,B-M., FORSBERGG, K.S.E., 1990. Flotation of mica minerals and selectivity between muscovite and biotite while using mixed anionic/cationic collectors. Mining Met. Explor., 7,127-132.
  • RAO, K-H., CASES, J.M., BARRES, O., FORSBERG, K.S.E., 1995. Flotation, electrokinetic and FT_IR studies of mixed anionic/cationic collectors in muscovite-biotite system. Mineral Processing: Recent Advances and Future Trends, 29-44.
  • SHANG, J., FLURY, M., HARSH, J.B., ZOLLARS, R.L., 2008. Comparison of different methods to measure contact angle of soil colloids. Journal of Colloid and Interface Science, 328, 299-307.
  • SURESH, L., WALZ, J.Y., 1996. Effect of surface roughness on the interaction energy between a colloidal sphere and a flat plate. Journal of Colloid and Interface Science, 183(1), 199–213.
  • VERELLI, D.I., BRUCKARD, W.J., KOH, P.T.L., SCHWARZ, M.P., FOLLINK, B., 2014. Particle shape effects in flotation. Part 1: Microscale experimental observations. Minerals Engineering, 58, 80–89.
  • WANG, L., SUN, W., HU, Y.H., XU, L.H., 2014. Adsorption mechanism of mixed anionic/cationic collectors in muscovite–quartz flotation system. Minerals Engineering, 64, 44–50.
  • WANG, X. and MILLER, J., 2018. Dodecyl amine adsorption at different interfaces during bubble attachment/detachment at a silica surface. Physicochem. Probl. Miner. Process., 54(1), 81-88.
  • WANG, L., SUN, N., LIU, J. TANG, H., LIU, R., HAN, H., SUN, W., HU, Y., 2018. Effect of chain length compatbility of alcohols on muscovite flotation by dodecyl amine. Minerals, 8(4), 168.
  • XING, Y., GUI, X. KARAKAS, F., CAO, Y., 2017. Role of collectors and depressants in mineralflotation: A theoretical analysis based on extended DLVO theory. Minerals, 7, 223.
  • XU, L. WU, H., DONG, F., WANG, L., WANG, Z., XIAO, J., 2013. Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica. Minerals Engineering, 41, 41–45.
  • YAN, L.J., MASLIYAH, J.H., XU, Z.H., 2013. Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: Muscovite and talc. Journal of Colloid and Interface Science, 404, 183–191.
  • YAO, J., HAN, H., HOU, Y., GONG, E. and YIN, W., 2016. A method of calculating the interaction energy between particles in minerals flotation. Mathematical Problems in Engineering, Hindawi Press, 1-13.
  • YOON, R.H. RAVISHANKAR, S.A., 1996. Long-range hydrophobic forces between mica surfaces in alkaline dodecyl ammonium chloride solutions. Journal of Colloid and Interface Science, 179, 403–411.
  • YOON, R.H., MAO, L.Q., 1996. Application of extended DLVO theory. 4. Derivation of flotation rate equation from first principles. Journal of Colloid and Interface Science, 181(2), 613– 626.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37012c27-8eac-4a0f-8e59-5606f26af229
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.