PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Road Transport on Air Pollution in EU Countries

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ transportu drogowego na zanieczyszczenie powietrza w krajach UE
Języki publikacji
EN
Abstrakty
EN
The main purpose of the work is to show the level of air pollution emitted by road transport and its relationship with economic development and transport infrastructure in European Union countries. The study presents the diversity in emissions of road transport by countries, shows the dynamics of changes in this area, determines the relationships between the level of economic development, equipping with road infrastructure and emissions of air pollution in EU countries. The research period concerned the years 2006-2017. The sources of data was EUROSTAT database. The ranking built by means of multidimensional data analysis tools indicated Portugal and Luxembourg as countries with relatively high emissions of air pollutants (group 3), countries with moderate emissions are Bulgaria, Malta, Cyprus and Sweden (group 2). Analysis of data on the rate of change in emissions and the volume of GDP in EU countries also indicates compliance with the Kuznets environmental curve.
PL
Celem głównym pracy było porównanie poziomu zanieczyszczenia powietrza emitowanego przez transport drogowy i jego związku z rozwojem gospodarczym i infrastrukturą transportową w krajach Unii Europejskiej w latach 2006-2017. W pracy przedstawiono zróżnicowanie w emisji zanieczyszczeń przez transport drogowy w krajach UE, ukazano dynamikę zmian w tym zakresie, określono związki i między poziomem rozwoju gospodarczego, wyposażeniem w infrastrukturę drogową, a emisją zanieczyszczeń powietrza. Dane pochodziły z baz i raportów EUROSTAT. Zbudowany za pomocą metod wielowymiarowej analizy danych ranking szeregujący Państwa pod względem emisji związków do atmosfery pochodzących z transportu i uwzględniając infrastrukturę drogową oraz powierzchnię kraju, wskazał na Portugalię i Luksemburg jako kraje o stosunkowo dużej emisji (grupa 3), kraje o umiarkowanej emisji to Bułgaria, Malta, Cypr oraz Szwecja (grupa 2). Analiza tempa zmian emisji zanieczyszczeń do powietrza oraz wielkości PKB w krajach Unii wskazuje także na zgodność ze środowiskową krzywą Kuznetsa.
Rocznik
Strony
1058--1073
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Life Sciences WULS – SGGW, Poland
  • Warsaw University of Life Sciences WULS – SGGW, Poland
  • Warsaw University of Life Sciences WULS – SGGW, Poland
Bibliografia
  • Achour, H., Belloumi, M. (2016). Investigating the causal relationship between transport infrastructure, transport energy consumption and economic growth in Tunisia. Renewable and Sustainable Energy Reviews, 56, 988-998.
  • Al-Dhurafi, N.A., Masseran, N., Zamzuri, Z.H., Razali, A.M. (2018). Modeling unhealthy air pollution index using a peaks-over-threshold method. Environmental Engineering Science, 35(2), 101-110.
  • Al-Mulali, U., Saboori, B., Ozturk, I. (2015). Investigating the environmental Kuznets curve hypothesis in Vietnam. Energy Policy, 76, 123-131.
  • Álvarez, I.C., Barbero, J., Zofío, J.L. (2016). A spatial autoregressive panel model to analyze road network spillovers on production. Transportation Research Part A: Policy and Practice, 93, 83-92.
  • Andreoni, J., Levinson, A. (2001). The simple analytics of the environmental Kuznetscurve. Journal of Public Economics, 80(2), 269-286.
  • Ansuategi A., Barbier E.B., Perrings C.A. (1998). The Environmental Kuznets Curve,van den Bergh J.C.J.M., Hofkes M.W. (eds), Theory and Implementation of Economic Models for Sustainable Development, Kluwer Academic Publishers. Brimblecombe, P. (1977). London air pollution, 1500-1900. Atmospheric Environment (1967), 11(12), 1157-1162.
  • Apergis, N., Ozturk, I. (2015). Testing environmental Kuznets curve hypothesis in Asian countries. Ecological Indicators, 52, 16-22.
  • Baloch, M.A. (2018). Dynamic linkages between road transport energy consumption, economic growth, and environmental quality: evidence from Pakistan. Environmental Science and Pollution Research, 25(8), 7541-7552.
  • Brand, C. (2016). Beyond 'Dieselgate': Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom. Energy Policy, 97, 1-12.
  • Builtjes, P., Paine, R. (2003). The Problem–Air Pollution, In: Zannetti P. (ed.) Air Quality Modeling – Theories, Methodologies, Computational Techniques and Available Databases and Software, The EnviroComp Institute and the Air & Waste Management Association, Westford, 1-20.
  • Button, K.J. (1994). Alternative approaches toward containing transport externalities: an international comparison. Transportation Research Part A: Policy and Practice, 28(4), 289-305.
  • Celbis, G., Nijkamp, P., Poot, J. (2014). Infrastructure and trade: A meta-analysis. Region, 1(1), 25-64.
  • Chapman, S., Meliciani, V. (2017). Behind the pan‐European convergence path: The role of innovation, specialisation and socio‐economic factors. Growth and Change, 48(1), 61-90.
  • Cole, M.A. (2003). Development, trade, and the environment: How robust is the environmental Kuznets curve? Environment and Development Economics, 8(4), 557-580.
  • Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., Van Dingenen, R., Granier, C. (2016). Forty years of improvements in European air quality: regional policy-industry interactions with global impacts. Atmospheric Chemistry and Physics, 16(6), 3825-3841.
  • Daly, A., Zannetti, P. (2007). An introduction to air pollution–definitions, classifications, and history, In: Zannetti, P., Al-Ajmi D., Al-Rashied S. (eds.) Ambient air pollution. The Arab School for Science and Technology and The EnviroComp Institute, Damascus, 1-14.
  • Dasgupta, S., Laplante, B., Wang, H., Wheeler, D. (2002). Confronting the environmental Kuznets curve. Journal of EconomicP, 16(1), 147-168.
  • Del Bo, C.F., Florio, M. (2012). Infrastructure and growth in a spatial framework: evidence from the EU regions. European planning studies, 20(8), 1393-1414.
  • Dinda, S. (2004). Environmental Kuznets curve hypothesis: a survey. Ecological Economics, 49(4), 431-455.
  • Dodgson, J.S. (1973). External effects and secondary benefits in road investment appraisal. Journal of Transport Economics and Policy, 7(2), 169-185.
  • Dore, C.J., Goodwin, J.W.L., Watterson, J.D., Murrells, T.P., Passant, N.R., Hobson, M. M., Haigh, K.E., Baggott, S.L., Pye, S.T., Coleman, P.J., King, K.R. (2003). UK emissions of air pollutants 1970 to 2001. 15th Annual Report from the UK National Atmospheric Emissions Inventory (NAEI), National Environmental Technology Centre, Abingdon, 1-194.
  • Dzikuc, M., Adamczyk, J., Piwowar, A. (2017). Problems associated with the emissions limitations from road transport in the Lubuskie Province (Poland). Atmospheric Environment, 160, 1-8.
  • Dzikuc, M., Dzikuc, M. (2018). The prospects for limiting emissions from road transport: a case study for the Middle Odra and Poland. In IOP Conference Series: Earth and Environmental Science, 121(3), 1-8.
  • EEA, (2018). Air quality in Europe – 2018 report, EEA Report No 12/2018, European Environment Agency EEA, Luxembourg.
  • EEA, (2019a). Air quality in Europe – 2019 report, EEA Report No 10/2019, European Environment Agency EEA, Luxembourg.
  • EEA, (2019b). Annual European Union greenhouse gas inventory 1990-2017 and inventory report 2019, EEA Report No 6/2019, European Environment Agency EEA, Luxembourg.
  • EEA, (2019c). European Union emission inventory report 1990-2017 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP), EEA Report No 8/2019, European Environment Agency EEA, Luxembourg.
  • European Commission, (2018). Statistical pocketbook 2018 – EU transport in figures. Directorate-General for Mobility and Transport, Luxembourg.
  • Eurostat (2020). https://ec.europa.eu/eurostat/data/database
  • Fameli, K.M., Assimakopoulos, V.D. (2015). Development of a road transport emission inventory for Greece and the Greater Athens Area: Effects of important parameters. Science of the Total Environment, 505, 770-786.
  • Fiedor, B. (2002). Podstawy ekonomii środowiska i zasobów naturalnych. C.H. Beck, Warszawa, 47-74.
  • Gherghina, S., Onofrei, M., Vintilă, G., Armeanu, D. (2018). Empirical evidence from EU-28 countries on resilient transport infrastructure systems and sustainable economic growth. Sustainability, 10(8), 2900.
  • Grange, S.K., Lewis, A.C., Moller, S.J., Carslaw, D.C. (2017). Lower vehicular primary emissions of NO 2 in Europe than assumed in policy projections. Nature Geoscience, 10(12), 914.
  • Gwilliam, K. M., Geerlings, H. (1994). New technologies and their potential to reduce the environmental impact of transportation. Transportation Research Part A: Policy and Practice, 28(4), 307-319.
  • Guevara, M. (2016). Emissions of Primary Particulate Matter. Airborne Particulate Matter: Sources, Atmospheric Processes and Health, 42, 1-34.
  • Harbaugh, W.T., Levinson, A., Wilson, D.M. (2002). Reexamining the empirical evidence for an environmental Kuznets curve. Review of Economics and Statistics, 84(3), 541-551.
  • Himanen, V., Lee-Gosselin, M., Perrels, A. (2005). Sustainability and the interactions between external effects of transport. Journal of Transport Geography, 13(1), 23-28.
  • Hu, A., Liu, S. (2010). Transportation, economic growth and spillover effects: The conclusion based on the spatial econometric model. Frontiers of Economics in China, 5(2), 169-186.
  • Jebli, M.B., Youssef, S.B., Ozturk, I. (2016). Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecological Indicators, 60, 824-831.
  • Jiang, X., Zhang, L., Xiong, C., Wang, R. (2016). Transportation and regional economic development: analysis of spatial spillovers in China provincial regions. Networks and Spatial Economics, 16(3), 769-790.
  • Kamińska, J.A. & Turek, T. (2020). Explicit and implicit description of the factors impact on the NO2 concentration in the traffic corridor. Archives of Environmental Protection, 46(1), 93-99. DOI: 10.24425/aep.2020.132530
  • Konečný, V., Petro, F., Berežný, R. (2016). Calculation of emissions from transport services and their use for the internalisation of external costs in road transport. Perner’s Contacts, 11, 68-82.
  • Koszela, G., Ochnio L., Rokicki T. (2019). Emissions of Air Pollutants in European Union Countries – Multidimensional Data Analysis. Rocznik Ochrona Środowiska, 21, 987-1000.
  • Kukuła, K. (2014). Wybrane problemy ochrony środowiska w Polsce w świetle wielowymiarowej analizy porównawczej. Quantitative Methods in Economics, XV/3, 169-188.
  • Lau, L.S., Choong, C.K., Ng, C.F. (2018). Role of Institutional Quality on Environmental Kuznets Curve: A Comparative Study in Developed and Developing Countries. In Advances in Pacific Basin Business, Economics and Finance. Emerald Publishing Limited, 223-247.
  • Mostert, M., Limbourg, S. (2016). External costs as competitiveness factors for freight transport – a state of the art. Transport Reviews, 36(6), 692-712.
  • Mostert, M., Caris, A., Limbourg, S. (2017). Road and intermodal transport performance: the impact of operational costs and air pollution external costs. Research in Transportation Business & Management, 23, 75-85.
  • Peters, L.K., Jouvanis, A.A. (1979). Numerical simulation of the transport and chemistry of CH4 and CO in the troposphere. Atmospheric Environment, 13, 1443.
  • Rokicki, T. (2016). Situation of steel industry in European Union, In Metal 2016: 25th Anniversary International Conference on Metallurgy and Materials. Conference Proceedings. Ostrava: TANGER Ltd., 2016, 1981-1986.
  • Rokicki T., (2017). Segmentation of the EU countries in terms of the mettalurgical industry, In Metal 2017: 26th Anniversary International Conference on Metallurgy and Materials. Conference Proceedings. Ostrava: TANGER Ltd., 2017, 184.
  • Rokicki T., Michalski K., Ratajczak M., Szczepaniuk H., Golonko M., (2018). Wykorzystanie odnawialnych źródeł energii w krajach Unii Europejskiej. Rocznik Ochrona Środowiska, 20, 1318-1334.
  • Rothengatter, W. (1994). Do external benefits compensate for external costs of transport? Transportation Research Part A: Policy and Practice, 28(4), 321-328.
  • Saidi, S., Hammami, S. (2017). Modeling the causal linkages between transport, economic growth and environmental degradation for 75 countries. Transportation Research Part D: Transport and Environment, 53, 415-427.
  • Stern, D.I., Common, M.S., Barbier, E.B. (1996). Economic growth and environmental degradation: the environmental Kuznets curve and sustainable development. World development, 24(7), 1151-1160.
  • Stern, D.I. (2004). The rise and fall of the environmental Kuznets curve. World development, 32(8), 1419-1439.
  • Stetjuha, A. (2017). Manifestation and record of the externalities in the transport services implementation. Procedia Engineering, 178, 452-460.
  • Sówka, I., Badura, M., Pawnuk, M., Szymański, P., Batog P. (2020). The use of the GIS tools in the analysis of air quality on the selected University campus in Poland. Archives of Environmental Protection, 46(1), 100-106. DOI: 10.24425/aep.2020.132531
  • Verhoef, E. (1994). External effects and social costs of road transport. Transportation Research Part A: Policy and Practice, 28(4), 273-287.
  • Vlahinić Lenz, N., Pavlić Skender, H., & Mirković, P.A. (2018). The macroeconomic effects of transport infrastructure on economic growth: the case of Central and Eastern EU member states. Economic research-Ekonomska istraživanja, 31(1), 1953-1964.
  • Yu, N., De Jong, M., Storm, S., Mi, J. (2013). Spatial spillover effects of transport infrastructure: evidence from Chinese regions. Journal of Transport Geography, 28, 56-66.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36f9a017-3c01-4250-a143-7d11e2404753
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.