PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of iron concentration changes in tap water after sampling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In most cases, it is impossible to analyse drinking water for iron content at the sampling point. The water needs to be transported to a specialized laboratory, which can take several hours. This also applies to tap water. It was previously established that iron in water quickly passes from soluble to insoluble form. As a result, its concentration within 90 minutes decreases by 1.5–2 times compared to the initial value. The aim of the research is to develop a new mathematical model for the prediction of the concentration of iron in drinking water depending on the duration of time from the moment of sampling to the moment of analysis. The model is based on empirical data obtained from measurements of iron concentration in tap water of the water supply system of the city of Pokrovsk, Donetsk region, Ukraine. Based on the analysis of four developed and analysed polynomial models for two samples of tap water, second-degree polynomial equations are recommended. A correlation analysis confirmed the presence a strong correlation of the iron content in tap water and the time interval between sampling and analysis. It was experimentally established that from the 90th minute the physical process of a parabolic decrease in the concentration of iron in tap water practically attenuate. The recommended time range for using proposed mathematical model is from 0 to 120 minutes from the moment of tap water sampling.
Twórcy
  • Chemical Engineering Department, Donetsk National Technical University, Shybankova Sq., 2, 85300, Pokrovsk, Ukraine
  • TECHN&ART Research Center, Polytechnic Institute of Tomar, Tomar, Estrada da Serra, Quinta do Contador, 2300-313, Portugal
autor
  • E.O. Paton Electric Welding Institute (PWI), 11, Kazymyr Malevych St., 03150, Kyiv, Ukraine
  • Smart Cities Research Center, Ci2, Polytechnic Institute of Tomar, Tomar, Estrada da Serra, Quinta do Contador, 2300-313, Portugal
autor
  • Chemical Engineering Department, Donetsk National Technical University, Shybankova Sq., 2, 85300, Pokrovsk, Ukraine
  • Chemical Engineering Department, Donetsk National Technical University, Shybankova Sq., 2, 85300, Pokrovsk, Ukraine
Bibliografia
  • 1. Abukhadra, M.R., Seliem, M.K., Mohamed, E.A., Selim, A.Q., Mahmoud, M.H. 2015. Application of Quadratic Polynomial Model for the Uptake of Iron from Aqueous Solutions by Natural and Modified Egyptian Bentonite. American Journal of Applied Chemistry, 3(6), 179–187. https://doi.org/10.11648/j.ajac.20150306.11
  • 2. Agori, J.E., Nwoke, H.U., Okoro, B.C., Dike, B.U. 2021. Application of correlation and regression models in predicting the physico-chemical quality of groundwater from insitu measured parameters. European Journal of Engineering and Technology Research, 6(6), 19-38. https://doi.org/10.24018/ejeng.2021.6.6.2575
  • 3. Alayat, Н., Badaoui, H. El., Abdallaoui, A., Abrid, D., Hmaidi, A. El. 2018. Development of mathematical models for predicting the iron concentrations of Lake Oubeira waters (ne Algerian). Journal of Fundamental and Applied Sciences, 10(1), 83–96. https://www.ajol.info/index.php/jfas/article/ view/165689
  • 4. Al-Musawi, N. 2016. Application of artificial neural network for predicting iron concentration in the location of al-wahda water treatment plant in Baghdad City. Journal of Engineering, 22, 72–82. http://doi.org/10.31026/j.eng.2016.09.05
  • 5. Blokker, E.J.M., Vreeburg, J.H.G., Buchberger, S.G., van Dijk, J.C. 2008. Importance of demand modelling in network water quality models: a review. Drinking Water Engineering and Science, 1, 27–38. https://doi.org/10.5194/dwesd-1-1-2008
  • 6. Daneshvar, E. 2015. Dissolved iron behavior in the ravenglass estuary waters, an implication on the early diagenesis. Universal Journal of Geoscience, 3(1), 1–12. https://doi.org/10.13189/ujg.2015.030101
  • 7. Di Caprio, F., Altimari, P., Astolfi, M.L., Pagnanelli, F. 2024. Optimization of two-phase synthesis of Fe-hydrochar for arsenic removal from drinking water: Effect of temperature and Fe concentration. Journal of Environmental Management, 351, 119834. https://doi.org/10.1016/j.jenvman.2023.119834
  • 8. Dimberg, P.H., Bryhn, A.C. 2015. Predicting total nitrogen, total phosphorus, total organic carbon, dissolved oxygen and iron in deep waters of Swedish lakes. Environ Model Assess, 20, 411–423. https://doi.org/10.1007/s10666-015-9456-4
  • 9. Ekström, S., Regnell, O., Reader, H., Nilsson, P., Löfgren, S., Kritzberg, E. 2016. Increasing concentrations of iron in surface waters as a consequence of reducing conditions in the catchment area. Journal of Geophysical Research: Biogeosciences, 121(2), 247–535. https://doi.org/10.1002/2015JG003141
  • 10. Faier Crivineanu, M., Silaghi Perju D., Dumitrel, G.A. 2012. Mathematical Models Describing the Relations between Surface Waters Parameters and Iron Concentration. Chemical Bulletin of “Politehnica” University of Timisoara, Series of Chemistry and Environmental Engineering, 57(71), 1. https:// www.researchgate.net/file.PostFileLoader.html?id=51ff8205d2fd64297fc29f6d&assetKey=AS%3A272129428262913%401441892119167
  • 11. Frost, R.C. 1979. Evaluation of the rate of decrease in the iron content of water pumped from a flooded shaft mine in County Durham, England. Journal of Hydrology, 40(1–2), 101–111. https://doi.org/10.1016/0022-1694(79)90090-8
  • 12. Gražulevičienė, R., Balčius, G. 2009. Assessment of iron and manganese concentration changes in kaunas city drinking water distribution system. Environmental Research, Engineering and Management, 4(50), 37–43.
  • 13. Haghiabi, A.H., Nasrolahi, A.H., Parsaie, A. 2018. Water quality prediction using machine learning methods. Water Quality Research Journal, 53(1), 3–13. https://doi.org/10.2166/wqrj.2018.025
  • 14. Huisamen, A., Wolkersdorfer, C. 2016. Modelling the hydrogeochemical evolution of mine water in a decommissioned opencast coal mine. International Journal of Coal Geology, 164(1), 3–12. https://doi.org/10.1016/j.coal.2016.05.006
  • 15. Kritzberg, E.S., Ekström S.M. 2012. Increasing iron concentrations in surface waters - A factor behind brownification? Biogeosciences, 9, 1465–1478. https://doi.org/10.5194/bg-9-1465-2012
  • 16. Kvartenko, О., Prysiazhniuk, І. 2022. Modeling the process of biological deferrization of underground waters in contact loading of bioreactor. Problems of Water supply, Sewerage and Hydraulic, 4, 19–30. https://doi.org/10.32347/2524-0021.2022.41.19-30
  • 17. Lin, X., Xu, Q., Li, Y., Zhao, B., Li, L., Qiang, Zh. 2021. Modelling iron release from cast iron pipes in an urban water distribution system caused by source water switch. Journal of Environmental Sciences, 110(1–3), 73–83. https://doi.org/10.1016/j.jes.2021.03.016
  • 18. Magnusson, B., Ornemark, U. 2014. Eurachem guide: the fitness for purpose of analytical methods – a laboratory guide to method validation and related topics, 2nd edn. https://www.eurac hem.org/images/stori es/ Guides/ pdf/ MV_ guide_ 2nd_ ed_ EN. Pdf
  • 19. Matthies, R., Aplin, A.C., Horrocks, B.R., Mudashiru, L.K. 2012. Occurrence and behaviour of dissolved, nano-particulate and micro-particulate iron in waste waters and treatment systems: New insights from electrochemical analysis. Journal of Environmental Monitoring, 14, 1173–1180. https://doi.org/10.1039/C2EM10846A
  • 20. Mutoti, G., Dietz, J.D., Imran, S.A., Taylor, J., Cooper, C.D. 2007. Development of a novel iron release flux model for distribution systems. American Water Works Association Journal, 99, 102–111. https://doi.org/10.1002/j.1551-8833.2007.tb07850.x
  • 21. Niu, Z.B., Wang, Y., Zhang, X.J., He, W.J., Han, H.D., Yin, P.J. 2006. Iron stability in drinking water distribution systems in a city of China. Journal of Environmental Science, 18(1): 40-46. PMID: 20050546
  • 22. Ostfeld, A. 2005. A review of modelling water quality in distribution systems. Urban Water Journal, 2(2), 107–114. https://doi.org/10.1080/15730620500144266
  • 23. Poliakov, V.L., Martynov, S.Y., 2023. Technological modelling of physicochemical removal of iron from deep groundwater. Heliyon, 9(9), e20202. https://doi.org/10.1016/j.heliyon.2023.e20202
  • 24. Pyshyev, S., Zbykovskyy, Y., Shvets, I., Miroshnichenko, D., Kravchenko, S., Stelmachenko, S., Demchuk, Y., Vytrykush, N. 2023. Modelling of coke distribution in a dry quenching zone. ACS Omega, 8(22), 19464–19473. https://pubs.acs.org/ doi/pdf/10.1021/acsomega.3c00747
  • 25. Ramzi, K., Nadir, M., Mohamed Tewfik, B., & Hakim, D.K. 2024. Hydrological forecasts modelling using artificial intelligence and conceptual models of Kébir-Rhumel watershed, Algeria. Ecological Engineering & Environmental Technology, 25(9), 68–80. https://doi.org/10.12912/27197050/190235
  • 26. Rawson, J., Prommer, H., Siade, A., Carr, J., Berg, M., Davis, J.A., Fendorf, S. 2016. Numerical modelling of arsenic mobility during reductive iron-mineral transformations. Environmental Science & Technology, 50(5), 2459–2467. https://pubs.acs.org/doi/ abs/10.1021/acs.est.5b05956
  • 27. Rahman, M., Gagnon, G. 2014. Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality. Water Research, 48, 137– 147. https://doi.org/10.1016/j.watres.2013.09.018
  • 28. Rusu, M., Ghendov-Mosanu, A., Sturza, R. 2021. Application of Polynomial Mathematical Models for the Extraction of Bioactive Compounds from Plant Sources. Applied Mathematics, 12, 1126– 1144. https://doi.org/10.4236/am.2021.1211072
  • 29. Safonyk, A., Martynov, S., Kynytskyi, S. 2019. Modeling of the contact removal of iron from groundwater. International Journal of Applied Mathematics, 32(1), 71–82. https:/doi.org/10.12732/ijam.v32i1.7
  • 30. Sayeed, M.A., Noor Ayesha, N., Mahadeva, B. K., Shanavaz, H. 2020. Estimation of iron using multiple linear regression models. International Journal for Research in Applied Science and Engineering Technology, 8, 733–747. https://doi.org/10.22214/ ijraset.2020.2113
  • 31. Stalikas, C., Sakkas, V. 2024. From a glimpse into the key aspects of calibration and correlation to their practical considerations in chemical analysis. Microchim Acta, 191, 81. https://doi.org/10.1007/s00604-023-06157-4
  • 32. Starovoit, A.G., Zbykovskyy, Y.I., Shvets, I.B. 2021. Environmental and economic assessment of reagent treatment for wastewater used in coke quenching. Coke and Chemistry, 64(11), 532–535. https://doi.org/10.3103/s1068364x21110077
  • 33. Tăban, C.I., Benedek, A.M., Stoia, M., Cocîrlea, M.D., Oancea, S. 2023. A multivariate model of drinking water quality based on regular monitoring of radioactivity and chemical composition. Appl. Sci. 13(18), 10544. https://doi.org/10.3390/ app131810544
  • 34. Turchanina – Rybak, O., Zbikovskyy, Y., Shvets, I., Castelbranco, A. 2021. Investigation for a sustainable use of fossil coal through the dynamics of interaction of smokeless solid fuel with oxygen. Proceedings of the International Conference on Industrial Engineering and Operations Management 2021, Rome, Italy, 171–182. https://doi.org/10.46254/EU04.20210173
  • 35. Urban, P.L. 2020. Please avoid plotting analytical response against logarithm of concentration. Analytical Chemistry, 92(15), 10210–10212. https://pubs. acs.org/doi/10.1021/acs.analchem.0c02096
  • 36. Vijay, A.K., Sharma, V.K., Meyerstein, D. 2023. overlooked formation of carbonate radical anions in the oxidation of iron(II) by oxygen in the presence of bicarbonate. Angewandte Chemie International Edition, 62(36). https://doi.org/10.1002/ anie.202309472
  • 37. Wojtkowska, M., Potyralla, M. 2022. Secondary iron ion contamination of water in the water supply network. Desalination and Water Treatment, 276, 203–213. https://doi.org/10.5004/dwt.2022.28970
  • 38. Woolschlager, J., Rittmann, B., & Piriou, P. 2005. Water quality decay in distribution systems – problems, causes, and new modelling tools. Urban Water Journal, 2(2), 69–79. https://doi.org/10.1080/15730620500144027
  • 39. Zbykovskyy, Y., Shvets, I., Kaulin, V., Shvets, I. 2024. Stabilization of iron content in drinking water after sampling – study of tap water in Donetsk region, Ukraine. Ecological Engineering & Environmental Technology, 25(12), 269–277. https://doi:10.12912/27197050/194839
  • 40. Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., Wu, B., Ye, L. 2022. A review of the application of machine learning in water quality evaluation. Eco-Environment & Health, 1(2), 107–116. https://doi.org/10.1016/j.eehl.2022.06.001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36f59fe1-ce32-4bf2-8bd5-7e342e2040a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.