Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A laboratory physical model of a new type of anaerobic fermenter for “dry” and “wet” anaerobic digestion consisting of silage bags was designed. In the model, the experiment based on high-solids discontinuous anaerobic co-fermentation of agricultural substrates was carried out. It was verified that a horizontal fermenter constructed from silage bags is a suitable type of equipment for the production of biogas. The biogas production peaked at 4th day and was completed by 18th day. Within 18 days of discontinuous high-solids process (18.5-20.0 wt. %TS) the intensity of biogas production reached 1.18 mN3. m-3 . d-1, or 0.0012 mN3. kg-1 . d-1, and the specific methane production 0.01 mN3. kg-1, or 0.07 mN3. kgVS-1. After conversion of the modeling process to a semi-continuous low-solids mode (3.5-5. 5 wt. %TS) during the daily dosage of 87 wt % mixture of biscuit meal EKPO-EB with 13 wt % CaO, the intensity of biogas production reached the value 2.42 mN3 . m-3 . d-1, or 0.0105 mN3 . kg-1 . d-1. The fermentation bag appears to be a more efficient device in the semi-continuous “low-solids” Laboratory model: “(2 inches)”.
Czasopismo
Rocznik
Tom
Strony
23--28
Opis fizyczny
Bibliogr. 22 poz., rys., wykr., tab.
Twórcy
autor
- VSB – Technical University of Ostrava, Centre for Environmental Technology 9350, 17. listopadu 15/2172, Ostrava – Poruba, 708 33, Czech Republic
autor
- VSB – Technical University of Ostrava, Centre for Environmental Technology 9350, 17. listopadu 15/2172, Ostrava – Poruba, 708 33, Czech Republic
autor
- VSB – Technical University of Ostrava, Centre for Environmental Technology 9350, 17. listopadu 15/2172, Ostrava – Poruba, 708 33, Czech Republic
autor
- CERNIN, s.r.o. Kruzberk, Czech Republic
autor
- VSB – Technical University of Ostrava, Centre for Environmental Technology 9350, 17. listopadu 15/2172, Ostrava – Poruba, 708 33, Czech Republic
Bibliografia
- 1. Radwan, A.M., Sebak, H.A., Mitry, N.R., El-Zanati, E.A. & Hamad, M.A. (1993). Dry anaerobic fermentation of agricultural residues. Biomass Bioenerg, 5 (6), 495-499. ISSN: 09619534.
- 2. Wise, D.L., Boyd, W.D, Blanchet, M.J. & Jenkins, B.M. (198 1). In situ-methane fermentation of combined agricultural residues. Res. Conservation, 6 (3-4), 275-294.
- 3. Schulte, D.D. & Luis, V. (1983). Kinetic analysis of anaerobic fermentation of dry beef cattle manure. AmericanSociety of Agricultural Engineers, l-27.
- 4. Kumar, J.A., Jianzheng, L., Junguo, H. & Sheng, C. (2010). Optimization of dry anaerobic fermentation of solid organic wastes. Adv. Mater. Res. 113-116, 740-743. 10.4028/ www.scientific.net/AMR.113-116.740.
- 5. Schäfer, W., Letho, M. & Teye, F. (2006). Dry anaerobic digestion of organic residues on-farm - a feasibility study. MTT Agrifood Research Finland, Reports 77, 98.
- 6. Linke, B., Miersch, S. & Gegner, M. (2002). High - solids fermentation in silage bag. Biogas association e.V. (Hrsg.) Reports from 11th Annual Conference of Biogas Association in Borken, Conference Report 2002: Biogas is a universal energy for tomorrow, pp. 70-80, (in German).
- 7. Jäkel, K. (2004). The effectiveness of dry fermentation. In: Agency for Renewable Resources (FNR) (Ed.). 23rd Gülzower discussion „dry fermentation“ Gülzow, 4/5 February 2004. Gülzow: FNR pp. 49-61, (in German).
- 8. Linke, B. (2004). The substrate used in the dry fermentation - Assessment of needs (science and research). In: Agency for Renewable resources (FNR) (Ed.). 23rd Gülzower discussion „dry fermentation“ Gülzow, 4/5 February 2004. Gülzow: FNR pp. 35-48, (in German).
- 9. Brummler, E. (2000). Full scale experience with the Biocel process. Water Sci. Technol. 41 (3), 299-304.
- 10. Rival, C.J., Duff, B.W., Dickow, J.H., Wiles, C.C., Nagle, N.J., Gaddy, J.L. & Clausen, E.C. (1998). Demonstration-scale evaluation of a novel high-solids anaerobic digestion process for converting organic wastes to fuel gas and compost. Appl. Biochem. and Biotech. 70-72, 687-695.
- 11. Six, W. & Debaere, L. (1992). Dry anaerobic conversion of munici pal solid waste by means of the Dranco process. WaterSci. Technol. 25 (7), 295-300.
- 12. Jewell, W.J. (1979). Future trends in digester design. In Stafford D A, Wheatley B I, Hughes D.E. (Eds). Proceedings of the First International Symposium on Anaerobic Digestion, London: Appl. Sci., pp. 467-489.
- 13. Briton, W.F. (2006). Compatibility of digestion and composting. BioCycle 47 (9), 42.
- 14. Brummler, E.T. & Koster, I.W. (1989). Enhancement of dry anaerobic batch digestion of the organic fraction of municipal solid waste by an aerobic pretreatment step. Biol. Waste, 31(3), 199-210. DOI: 10.1016/0269-7483(90)90159-P.
- 15. Kalyuzhnyi, S., Veeken, A. & Hamelers, B. (2000). Two- -particle model of anaerobic solid-state fermentation. WaterSci. Technol. 41 (3), 43-50.
- 16. Mumme, J., Linke, B., Tölle, R. (2010). Novel upflow anaerobic solid-state (UASS) reactor. Bioresour. Technol. 101 (2), 592-599. DOI: 10.1016/j.biortech.2009.08.073.
- 17. Vítěz, T., Kukla, R., Karafiát, Z. & Haitl, M. Netekutá fermentace substrátů ze zemědělské činnosti. Biom.cz [online]. 2011-03-21 [cit. 2013-01-16]. Dostupné z WWW: <http:// biom.cz/cz/odborne-clanky/netekuta-fermentace-substratu-zezemedelske- cinnosti>. ISSN: 1801-2655, (in Czech).
- 18. Hoffmann, M. (2004). Biogas ohne Gulle erzeugen. DLGMitteilungen, 10, 48.
- 19. Ahuja, S .K. (2004). Utilization of enzymes for environmental applications. Crit. Rev. Biotechnol. 24 (2-3), 125-154. DOI: 10.1080/07388550490493726.
- 20. Parawira, W. (2012). Enzyme research and applications in biotechnological intensification of biogas production. Crit. Rev. Biotechnol. 32 (2), 172-186. DOI: 10.3109/07388551.2011.595384.
- 21. Copar, A. & Pullammanappallil, P. (2008). Single-stage, batch leach-bed thermophilic anaerobic digestion of spent sugar beet pulp. Bioresour. Technol., 99 (8), 2831-2839. DOI: 10.1016/j. biortech.2007.06.051.
- 22. Gallert, C., Henning, A. & Winter, J. (2003). Scale-up of anaerobic digestion of the biowaste fraction from domestic wastes. Water Res., 37, 1433-1441. DOI: 10.1016/S0043-1354(02)00537-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36f50ffd-0e56-4b73-9489-5d2ccfde28bd