PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving grinding ball lifespan and efficiency through hardenability modelling and optimization

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Grinding balls are spherical or cylindrical components used in grinding and milling operations to reduce the size of particles and achieve a finer product. They are made of high chromium white cast iron (HCWCI) and used in a variety of industrial processes. The efficiency of the grinding process is heavily influenced by the properties of the grinding balls, including their composition, size, and hardness. As such, there is ongoing research and development to improve the performance and durability of grinding balls, with the aim of countering the extreme conditions of wear and impact that cause a reduction in their lifespan. This study involved austenitizing balls with diameters of 50 mm and 70 mm at temperatures of 950°C and 1050°C, followed by quenching using both oil and compressed air. By exploiting the experimental HRC hardness results obtained in this work, the study aims to find a mathematical model relating the response (hardenability) to the main effects (austenitization temperature, quenching medium, and diameter balls) and their interactions. Analysis of variance (ANOVA) was used to establish the statistical significance parameters and an optimization of response by the best sub-models method and by the desirability function is realized in the second part of this work. It seems that the austenitization temperature and the size of the balls have a stronger impact on the hardenability of the balls than the cooling rate (quenching medium) by reducing the hardness difference between the surface and the medium of the ball to minimal values.
Rocznik
Strony
5--20
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Research Laboratory for Industrial Technologies, Department of Mechanical Engineering, Faculty of Applied Sciences, Ibn Khaldoun University, Tiaret, Algeria
autor
  • Research Laboratory for Industrial Technologies, Department of Mechanical Engineering, Faculty of Applied Sciences, Ibn Khaldoun University, Tiaret, Algeria
Bibliografia
  • 1. Rassim, Y., Sadeddine, A., Bradai, M.A., Aissat, S., Benabbas, A.: Investigation on the influence of tempering on microstructure and wear properties of high alloy chromium cast iron. Advances in Materials Science 21 2(68) (2021), 65-76.
  • 2. Gudukeya, L. K., Mbohwa, C.: Designing a Quenching System for Grinding Steel Balls - Case Study. MATEC Web of Conferences 108 (2017), 11001.
  • 3. Aissat, S., Sadeddine, A., Bradai, M., Rassim, Y., Bilek, A., Benabbas, A.: Effect of Heat Treatment on the Hardness and Wear of Grinding Balls. Metal Science and Heat Treatment 59 (2017), 297–301.
  • 4. Laird, G., Gundlach, R., Röhrig, K.: Abrasion-resistant Cast Iron Handbook. American Foundry Society [ed.], Schaumburg, USA, 2000.
  • 5. Kosasu, P., Inthidech, S., Sriprateep, K., Matsubara, Y.: The Effect of Sub-Critical Heat Treatment on Hardness, Retained Austenite and Abrasive Wear Resistance of Hypoeutectic 16 mass% Cr-2 mass% Mo Cast Iron with Varying Vanadium Content. Materials Transactions 57 (2016), 174–182.
  • 6. Ying-long, S., Dan, L., Xue-kun, Z.: Optimizing hardenability of high chromium white cast iron. China Foundry 3 (2006), 284–287.
  • 7. Muzinda, A., Muvunzi, R., Maware, C.: Quality Improvement in the Production Process of Grinding Balls. International Journal of Engineering Sciences & Research Technology 2 (2013), 19–23.
  • 8. Inthidech, S., Sricharoenchai, P., Matsubara, Y.: Effect of Alloying Elements on Heat Treatment Behaviour of Hypoeutectic High Chromium Cast Iron. Materials Transactions 47 (2006), 72–81.
  • 9. Scandian, C., Boher, C., De Mello, J.D.B., Rézaï-Aria, F.: Effect of molybdenum and chromium contents in sliding wear of high-chromium white cast iron. The relationship between microstructure and wear. Wear 267 (2009), 401–408.
  • 10. Guo, Z., Xiao, F., Lu, S., Li, H., Liao, B.: Effects of Heat-Treatment on the Microstructure and Wear Resistance of a High-Chromium Cast Iron for Rolls. Advances in Materials Science and Engineering (2016) 9807685, 1–7.
  • 11. Abdel-Aziz, K., El-Shennawy, M., Omar, A.A.: Microstructural Characteristics and Mechanical Properties of Heat Treated High-Cr White Cast Iron Alloys. International Journal of Applied Engineering Research 12 (2017), 4675–4686.
  • 12. Karantzalis, E., Lekatou, A., Mavros, H.: Microstructure and properties of high chromium cast irons: effect of heat treatments and alloying additions. International Journal of Cast Metals Research 22 (2009), 448–456.
  • 13. Camurri, C., Carrasco, C., Zapata-Hernández, O., Reyes, L., Colás, R., Garza-Montes-de-Oca, N.F.: Proposed heat treatment conditions to improve toughness of steel grinding balls. La Metallurgia Italiana 9 (2015), 29–35.
  • 14. Zapata-Hernández, O., Reyes, L. A., Camurri, C., Carrasco, C., Garza-Montes-de-Oca, N. F., Colás, R.: Quenching simulation of steel grinding balls. Revista de Metalurgia (Madrid) 51 (2015), 1–6.
  • 15. Hosseinzadeh, F., Mahmoudi, A. H., Truman, C. E., Smith, D. J.: Prediction and Measurement of Through Thickness Residual stresses in Large Quenched Components. Proceedings of The World Congress on Engineering, London, U.K., 2009, 1–3.
  • 16. Neves, F.O., Oliviera, T.L.L., Braga, D.U., DaSilva, A.S.C.: Influence of Heat Treatment on Residual Stress in Cold-Forged Parts. Advances in Materials Science and Engineering (2014) 658679, 1–6.
  • 17. Zhang, Y., Han, Q., Shi, Z., He, G.: Influence of cooling rate on the microstructure and wear properties of high chromium white cast iron. Journal of Materials Research and Technology 14 (2021), 1204-1214.
  • 18. Wu, B., Cao, L., Wang, Z., Zhang, Q., Song, Z.: The microstructure and wear resistance of high chromium white cast iron with varying titanium additions. Journal of Alloys and Compounds 828 (2020), 154316.
  • 19. Tupaj, M., Orłowicz, A.W., Trytek, A., Mróz, M., Wnuk, G., Dolata, A.J.: The Effect of Cooling Conditions on Martensite Transformation Temperature and Hardness of 15% Cr Chromium Cast Iron. Materials 13 (2020), 1–13.
  • 20. Jankovic, A., Valery, W., Davis, E.: Cement grinding optimisation. Minerals Engineering 17 (2004), 1075–1081.
  • 21. Azizi, A.: Investigating the controllable factors influencing the weight loss of grinding ball using SEM/EDX analysis and RSM model. Engineering Science and Technology, an International Journal 18 (2015), 278–285.
  • 22. Platt, G.K.: Hardenability, transformation and precipitation effects in vanadium steels. Doctoral thesis. Sheffield Hallam University, U.K., 1988.
  • 23. Vivier, S.: Stratégies d’optimisation par la méthode des Plans d’Expériences, et Application aux dispositifs électrotechniques modélisés par Eléments Finis. Thèse de doctorat. Université des Sciences et Technologies de Lille, France, 2002.
  • 24. Sharma, V.K., Rana, M., Singh, T., Singh, A.K., Chattopadhyay, K.: Multi-response optimization of process parameters using Desirability Function Analysis during machining of EN31 steel under different machining environments. Materials Today: Proceedings 44 (2021), 3121-3126.
  • 25. Singaravel, B., Selvaraj, T.: Application of Desirability Function Analysis and Utility Concept for Selection of Optimum Cutting Parameters in Turning Operation. Journal of Advanced Manufacturing Systems 15 (2016), 1-11.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36f16f2e-8fe4-4008-ba5a-a38ce179c17d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.