Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present article discusses the three-dimensional (3D) printing process in the fused deposition modeling (FDM) or the fused filament fabrication (FFF) technique using the author’s own philosophy of shaping the printing head path. The main requirements are the possibility of eliminating supports and reducing or even eliminating the need for the mechanical processing of 3D prints before their final assembly. The presented methodology was implemented in a computer program written by the author and was used to print typical parts used in aviation. Individual methods of shaping parts typical for the construction of small flying models, such as wings and fuselages, and methods of strengthening and connecting them have been discussed. The proposed solutions are illustrated with photos of readymade prints. This article also discusses the issues that printing high-quality parts may encounter and how to avoid them. Some attention has also been paid to the materials used for printing and their suitability in the construction of aircraft and their fatigue strength.
Czasopismo
Rocznik
Tom
Strony
28--43
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
- Łukasiewicz Research Network - Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
autor
- Łukasiewicz Research Network - Institute of Aviation, EDC, al. Krakowska 110/114, 02-256 Warsaw, Poland
Bibliografia
- Afrose, M. F., Masood, S. H., Iovenitti, P., Nikzad, M., & Sbarski, I. (2016). Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Progress in Additive Manufacturing, 1(1-2), 21-28. https://doi.org/10.1007/s40964-015-0002-3
- Ahmadi, R., D’Andrea, D., & Santonocito, D. (2023). Fatigue assessment of 3D-printed porous PLA-based scaffold structures by Thermographic Methods. IOP Conference Series: Materials Science and Engineering, 1275(1), 012002. https://doi.org/10.1088/1757-899x/1275/1/012002
- Algarni, M. (2022). Fatigue behavior of PLA material and the effects of mean stress and notch: Experiments and modeling. Procedia Structural Integrity, 37, 676-683. https://doi.org/10.1016/j.prostr.2022.01.137
- Azadi, M., Dadashi, A., Dezianian, S., Kianifar, M., Torkaman, S., & Chiyani, M. (2021). High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing. Forces in Mechanics, 3, 100016. https://doi.org/10.1016/j.finmec.2021.100016
- Ezeh, O. H., & Susmel, L. (2018). On the fatigue strength of 3D-printed polylactide (PLA). Procedia Structural Integrity, 9, 29-36. https://doi.org/10.1016/j.prostr.2018.06.007
- France, A. K. (2014). Świat druku 3D. Przewodnik. Kompedium wiedzy o druku SD [Make 3D Printing. The Essential Guide to 3D Printers]. Helion.
- Guide to Tensile Strength | OneMonroe. (n.d.). Home | OneMonroe. Access 26 Nov 2023 https://monroeengineering.com/info-general-guide-tensile-strength.php
- Mueller, M., Sleger, V., Kolar, V., Hromasova, M., Pis, D., & Mishra, R. K. (2022). Low-cycle fatigue behavior of 3D-printed PLA reinforced with natural filler. Polymers, 14(7), 1301. https://doi.org/10.3390/polym14071301
- Szafran, K. S., & Kramarski, I. (2019). Fatigue degradation of the ram-air parachute canopy structure. Fatigue of Aircraft Structures, 2019(11), 103-112. https://doi.org/10.2478/fas-2019-0010
- Szafran, K. S., & Michalczyk, M. (2021). Research on hovercraft - fatigue cracks in the engine frame. Fatigue of Aircraft Structures, 2021(13), 106-115. https://doi.org/10.2478/fas-2021-0010
- Travieso-Rodriguez, J. A., Jerez-Mesa, R., Llumà, J., Traver-Ramos, O., Gomez-Gras, G., & Roa Rovira, J. J. (2019). Mechanical properties of 3D-printing polylactic acid parts subjected to bending stress and fatigue testing. Materials, 12(23), 3859. https://doi.org/10.3390/ma12233859
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36efa977-b740-47f1-a461-f6f2ba08ef69