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Unsteady natural convection in micropolar
nanofluids
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Abstract This paper presents the analysis of momentum, angular mo-
mentum and heat transfer during unsteady natural convection in micropolar
nanofluids. Selected nanofluids treated as single phase fluids contain small
particles with diameter size 10–38.4 nm. In particular three water-based
nanofluids were analyzed. Volume fraction of these solutions was 6%. The
first of the analyzed nanofluids contained TiO2 nanoparticles, the second
one contained Al2O3 nanoparticles, and the third one the Cu nanoparticles.
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Nomenclature

a – fluid thermal diffusivity, m2/s
c – specific heat at constant pressure of the nanofluid
dp – diameter of the nanoparticle, nm
E – heat transfer enhancement
Grx – local Grashof number
g – gravitational acceleration, m/s2

j – microinertia density, m2

kb – Boltzmann constant
M – molecular weight of the base fluid; total number of spatial steps in x

directions
N – microrotation component normal to xy plane, 1/s; total number of

spatial steps in y directions
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156 K. Rup and K. Nering

NA – Avogadro number
n – microrotation parameter
Nux – Nusselt number
P , ∆ – micropolar fluid parameters
Pr – Prandtl number
q0 – constant heat flux through the vertical plate
Re – Reynolds number
t – temperature of fluid, K
T – dimensionless temperature
Tw – dimensionless wall temperature
Tfr – freezing point of the base fluid
u, v – x and y components of the velocity field, m/s
U, V – dimensionless components of the velocity field,
x, y – the coordinates of reference system, m
X,Y – dimensionless coordinates

Greek symbols
δ – hydrodynamic boundary layer thickness
δt – thermal boundary layer thickness
γ – spin gradient viscosity, N s
κ – rotational viscosity coefficient, Pa s
λ – thermal conductivity, W/(m K)
µ – dynamic viscosity, Pa s
ρ – density, kg/m3

ρβ – coefficient of thermal expansion
ρc – heat capacity at constant pressure
φ – nanoparticle volume fraction
σ – relative change of temperature
τ – time, s
τw – shear stress of a vertical surface, Pa

– overbar denotes dimensionless variables

Subscripts and superscripts
i, j – grid locations in x, y directions
f – properties of base fluid
s – properties of solid nanoparticles
∞ – conditions far away from the wall

1 Introduction

Conventional fluids, such as water, oil, alcohol, glycol ethylene, widely used
in heat exchange devices, have relatively low thermal conductivity coeffi-
cient. Recently, a new generation of heat carriers known as nanofluids has
been developed [1–4]. These types of fluids consist of conventional fluid and
nanoparticles with diameter of particle ranging from 10 to 100 nm mixed
uniformly with the fluid. Generally, they contain particles of substances
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Unsteady natural convection in micropolar nanofluids 157

such as Al2O3, TiO2, CuO and Cu [1,4]. The discussed nanofluids are
characterized by increased effective thermal conductivity and dynamic vis-
cosity. During experimental studies nanofluids behave like a single phase
Newtonian fluid in convectional heat exchange process [2–5]. Recently in
[4,5] were presented methods based on a large number of experimental data,
used to determine thermophysical parameters of nanofluids. These corre-
lations provide theoretical and practical analysis of heat exchange due to
natural convection. Paper [1] analyzes the process of steady natural con-
vection in the nanofluid in the vicinity of a vertical plate heated by applied
constant heat flux. In particular the water suspension of Al2O3 and CuO
was analyzed. Volume fraction of these suspensions did not exceed 10%.
A similar work [2] described the natural convection in water suspension of
Al2O3 at the same thermodynamic conditions. Another paper [3] describes
numerical solution of the equations of conservation of mass, momentum
and energy in natural convection process in water suspensions of Al2O3 and
CuO placed in six different closed areas. Increased heat exchange was ob-
served only in triangle-shaped area. The amount of increase was only 5%
compared to water without nanoparticles [3].

Due to miniaturisation of heat exchange devices, micropolar fluids as
refrigerant or heating media are also analysed in [6–8]. A useful model of
micropolar fluid is a model proposed by Eringen. This model takes into
account fluid microrotation [6–8].

The aim of work described in this paper is the analysis of increased heat
exchange due to natural convection in water solutions of Al2O3, TiO2 and
Cu with properties of micropolar nanofluids in the vicinity of vertical plate
heated by heat flux of q0 that rises suddenly.

2 Estimating properties of nanofluids

The typical approach used to study thermodynamic properties of nanofluids
is based on the assumption that nanofluids behave like single phase fluids.
There are empirical equations proposed by authors used to determine dif-
ferent features of nanofluids such as thermal conductivity, viscosity, density
and thermal expansion [4,5]. It is worth mentioning that all models are
applicable only in a specific range of nanofluid parameters.

Several authors are proposing different methods to estimate heat con-
ductivity of the nanofluid. This parameter is the most important one with
respect to the heat transfer process [4,5]. Based on a large amount of data
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158 K. Rup and K. Nering

presented in [4] a method of heat conductivity calculation was proposed:

λ = λf + 4.4Re0.4 Pr0.66f

(

T

Tfr

)10

λf

(

λs
λf

)0.03

φ0.66 . (1)

This equation is suggested especially when the nanofluid is based on water
and glycol ethylene with Al2O3, TiO2, CuO or Cu nanoparticles. In Eq. (1)
the Reynolds number is given by equation

Re =
2ρfkbT

πµ2fdp
(2)

and the Prandtl number as:

Pr =
µcρ

λρ
. (3)

Equation (3) shows that the Prandtl number increases after adding nanopar-
ticles to base fluid.

Many models enabling determining dynamic viscosity have been devel-
oped [5]. For example classical no-slip models such as Einstein or Brinkman
models yield:

µ = (1 + 2.5φ) µf , (4)

µ =
µf

(1− φ)2.5
. (5)

For water suspension of Al2O3 nanoparticles, authors recommend the fol-
lowing relationship [4]:

µ =
(

123φ2 + 7.3φ + 1
)

µf . (6)

Recently, using a large number of experimental data from several other
authors, an empirical equation to determine dynamic viscosity has been
proposed [4]:

µ =
µf

1− 34.87 (dp/df )
−0.3 φ1.03

. (7)

To calculate the equivalent diameter of the base fluid molecule from Eq. (7),
an equation proposed in [4] was used:

df =
6M

Nπρf0
. (8)
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Unsteady natural convection in micropolar nanofluids 159

One of the methods to determine density, heat capacity and thermal expan-
sion coefficient is the conventional approach [4,5]. It can be assumed that
nanofluid is a single phase fluid. Thus those parameters can be calculated
as in case of mixtures. It is given by

ρ = (1− φ) ρf + φρs , (9)

ρc = (1− φ) (ρc)f + φ (ρc)s , (10)

ρβ = (1− φ) (ρβ)f + φ (ρβ)s . (11)

In energy equations, heat capacity and thermal expansion coefficient are
always considered with fluid density, thus Eqs. (10) and (11) will be used.

3 Problem formulation

In this paper unsteady laminar heat and momentum exchange in nanofluids
in terms of natural convection will be considered. Nanofluid is considered
in the vicinity of a vertical plate. The heat flux through the plate rises
suddenly to the value of q0.

Figure 1: Considered fluid schema, δ – hydrodynamic boundary layer thickness, δt –
thermal boundary layer thickness.

Problem presented in this work will be solved using the following assump-
tions:
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160 K. Rup and K. Nering

• Oberbeck-Boussinesq approximation.

• Flow geometry justifies the use of the boundary layer approximation.

• Viscous dissipation and pressure work are neglected.

• Eringen’s theory of thermomicrofluid is assumed.

Taking into account the simplification resulting from the boundary layer, the
boundary layer theory and fluid density changes according to the Oberbeck-
Boussinesq approximation and the following system of equations in dimen-
sionless form can be obtained:

∂U

∂X
+
∂V

∂Y
= 0 , (12)

∂U

∂τ
+ U

∂U

∂X
+ V

∂U

∂Y
= (1 + ∆)

∂2U

∂Y 2
+∆

∂N

∂Y
+ T , (13)

∂N

∂τ
+ U

∂N

∂X
+ V

∂N

∂Y
= (1 +

∆

2
)
∂2N

∂Y 2
−∆(2N +

∂N

∂Y
)P , (14)

∂T

∂τ
+ U

∂T

∂X
+ V

∂T

∂Y
=

1

Pr∞

∂2T

∂Y 2
. (15)

For above equations the initial and boundary conditions will be a dimen-
sionless form:

τ < 0 , U = V = T = 0 , (16)

τ ≥ 0 , X = 0 , U = V = T = 0 , (17)

Y = 0 , U = V = 0 , −∂T
∂Y

= 1 , N = −n∂U
∂Y

, (18)

Y → ∞ U = V = T = N = 0 . (19)

Dimensionless parameters from the above equations are defined as:

T =
t− t∞

[v2∞( q0λ )
3 1
gβ ]

1
4

, τ =
τ

[( λ
q0
) 1
gβ ]

1
2

, (20)

U =
u

[v2∞
q0
λ gβ]

1
4

, V =
v

[v2∞
q0
λ gβ]

1
4

, (21)

X =
x

[v2∞
λ
q0

1
gβ ]

1
4

, Y =
y

[v2∞
λ
q0

1
gβ ]

1
4

=
y

x
(Grx)

1
4 , (22)
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Grx =
gβ

v2∞

q0
λ
x4 , N = N [gβ

q0
λ
]−

1
2 , (23)

∆ =
κ

v∞ρ
, P =

v∞
j

1

( q0λ gβ)
1
2

=
x2

j
(Grx)

− 1
2 . (24)

In Eq. (18) similarly to [2–6] the relation between microrotation component
normal to xy-plane and velocity gradient (shear stress) on the plate was
assumed. The value of microrotation parameter n from Eq. (18) is between
0 and 1 [7,8]. The value n = 0 corresponds to the case of the high den-
sity of liquid microparticles that prevents them from performing rotational
movements. The value n = 0.5 is indicative of weak concentrations and the
value n = 1 is representative for turbulent boundary layer [7,8].

Parameters occurring in Eq. (24) such as microinertia density, rotational
viscosity coefficient and spin gradient viscosity are related to the following
equation [6–8]:

γ =
(

µ+
κ

2

)

j . (25)

The set of partial differential equations (12)–(15) together with initial and
boundary conditions (16)–(19) will be solved numerically using the finite
difference method [8,9].

4 Problem solution

Equations (12)–(15) will be solved using explicit finite difference scheme.
Spatial distribution grid contains M ×N points in the X and Y directions
respectively, ∆τ is the time step. Due to the intensive heat, momentum,
angular momentum and mass transfer, only in the direct vicinity of the con-
sidered vertical surface, the maximum values of dimensionless coordinates
X = 100 and Y = 30 were assumed [8]. A characteristic feature of the dif-
ference equations was to determine the temperature field, the velocity field
components and the microrotation component N at time τn+1 depending
on certain parameters, but determined at time τn. Convection terms of
balance equations comprising time τ derivatives and spatial Y coordinate
derivatives were approximated by ‘forward’ formulas whereas spatial X co-
ordinate derivatives were approximated by “backward” formulas. Diffusion
terms were approximated by central differences. Derivatives appearing in
the boundary conditions (18) were approximated by higher order difference

Brought to you by | provisional account
Unauthenticated

Download Date | 4/12/15 10:04 AM



162 K. Rup and K. Nering

formulas taken in the form [9]:

∂T

∂Y|ij
=

1

6∆Y

(

− 11Tij + 18Ti,j+1 − 9Ti,j+2+2T i,j+3

)

+O[∆Y ]3 , (26)

− 1

n
N|i,j =

∂U

∂Y|ij
=

1

12∆Y

(

− 25U i,j + 48U i,j+1−

−36U i,j+2 + 16U i,j+3 − 3U i,j+4

)

+O[∆Y ]4 . (27)

These difference formulas are statically stable and exhibit characteristics of
conservation [9].

Before performing basic numerical calculations for the established, non-
zero values of parameters ∆ and P describing the properties of micropolar
fluid, calculation tests were done similarly to [8]. In the process of steady
natural convection in a Newtonian fluid, the exact analytical solutions are
known [10], and were compared to the corresponding calculation results. On
the basis of preliminary calculations, further ones, taking into account the
nonzero values of ∆ and P parameters, were performed with the following
spatial area division: M × N = 250 × 150, the time step ∆τ = 0.002.
Assumed area division is smaller than area division in work [8] and the
time step is two times greater. This change of area division and time step
needs to be done to obtain greater accuracy of the applied differential forms.

5 Results and discussion

The set of Eqs. (12)–(15) with initial condition (16) and boundary condi-
tions (17)–(19) were integrated for the selected values of parameters Pr, P,∆
and n. Water (W) in temperature of 60 oC was the base fluid. The Prandtl
number of base fluid was 3.00. In the next stage of analysis it was as-
sumed that base fluid has micropolar features with the following parame-
ters: ∆ = 5.0, P = 1.0 and n = 0.5. These parameters were assumed based
on literature data and previous own works [7,8].

Main analysis was focused on the effects occurring in nanofluids. In
this work, the following homogeneous water solutions of nanoparticles were
analysed:

• water solution of Al2O3 nanoparticles with mean diameter of 38.4 nm,

• water solution of TiO2 nanoparticles with mean diameter of 27 nm,
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Unsteady natural convection in micropolar nanofluids 163

• water solution of Cu nanoparticles with mean diameter of 10 nm.

Nanoparticle volume fraction for the above solutions was φ = 6%. Pa-
rameters describing these solutions for temperature 60 oC calculated using
Eqs. (1)–(8) are presented in Tab. 1.

Table 1: Thermophysical parameters of water-based nanofluids in temperature
t∞ = 60 oC.

Fluid D
e
n
s
it
y
,
ρ

[k
g
/
m

3
]

D
y
n
a
m

ic

v
is

c
o
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,
µ
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g
/
(m

s)
]
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h
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λ
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K
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[J
m

3
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K
]

T
h
e
r
m

a
l

e
x
p
a
n
s
io

n
,
ρ
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,
P
r
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a
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e
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c
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r
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e
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X
/
X

f
;
Y
/
Y
f

N
o
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e
d
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m

e
t
e
r

∆
/
∆

f

N
o
r
m

a
li
s
e
d

p
a
r
a
m

e
t
e
r

P
/
P
f

Water (W) 983.24 4.688×10−4 0.6590 4111221.4 0.4956 3.00 1.000 1.000 1.000

W + TiO2

(27 nm)
1178.05 1.015×10−3 1.0063 4040178.0 0.4681 3.4599 0.631 0.462 2.515

W + Al2O3

(38.4 nm)
1157.05 0.9089×10−3 0.9757 4042640.1 0.4678 3.253 0.668 0.516 2.238

W + Cu
(10 nm)

1460.65 1.705×10−3 1.2392 4071062.1 0.4932 3.8347 0.494 0.275 4.102

Figure 2 shows the U velocity component in the X-axis direction for
water (Pr = 3.00) and two different nanofluids with Prandtl number Pr
= 3.253 and 3.460 at fixed times of the process τ = 10, 20, and 80. In
order to simplify the analysis the thermophysical parameters values for ∆
and P were considered to equal zero. Figure 2 shows three different cases
with characteristic value of Grashof number Grx = 108. For the assumed
Grashof number, dimensionless coordinate X adopts values from Tab. 1.
For nanofluids, this X value equals respectively XT iO2 = 0.631Xf and
XAl2O3 = 0.668Xf . Line marked with circles represents results for water
as the base fluid. Lines marked with triangles and squares represent results
of velocity component U in nanofluids. Maximum values of velocity com-
ponent U are lower than corresponding values for water in the entire range
of τ .

Figure 3 presents temperature profiles in the considered liquids at cer-
tain moments of the process, namely τ = 10, 20 and 80. Similarly as for
the U velocity component, proper values of parameters describing the ther-
mophysical properties of the fluid were assumed. Furthermore temperature
profile in fluid with micropolar features (∆ = 5.0 and P = 1.0) was pre-
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164 K. Rup and K. Nering

Figure 2: Profiles of the velocity component U at selected moments of the process.

sented only for the time τ = 80. This profile, represented by the dashed line,
indicates significantly larger temperature values than other fluids. Temper-
ature of the heated plate is the largest for the fluid with micropolar features.
Maximal relative increase of temperature of the heated plate for micropo-
lar fluid in the last stage of the process is σ = (Tw − T f

w)/T
f
w = 0.230.

High temperature of the heated vertical plate indicates significantly smaller
intensity of heat interception by the analyzed micropolar fluid than other
fluids. Figure 3 shows larger rate of heat interception intensity in the entire
range of time in comparison with water. Values of σ parameter for the ana-
lyzed nanofluids are: σCu = −0.186; σT iO2 = −0.122 and σAl2O3 = −0.098.

On the basis of temperature profile distribution the local Nusselt num-
ber Nux in the analyzed fluid on heated vertical plate yields

Nux =
q0

tw − t∞

x

λ
. (28)
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Figure 3: Profiles of the fluid temperature changes.

Using dimensionless Eqs. (20)–(24) with the Nusselt number (28) we obtain

Nux

Gr
1
5
x

= X
1
5
1

Tw
, (29)

where

Tw =
tw − t∞

[v2∞( q0λ )
3 1
gβ ]

1
4

. (30)

The relationship (29) is shown graphically in Fig. 4. For the sake of com-
parison, Fig. 4 comprises the corresponding curve obtained for pure wa-
ter. Curves from Fig. 4 represent local Nusselt number with respect to
local Grashof number (Nux/(Grx)

1/5), where the value of Grx = 108. It is
worth mentioning that corresponding lines of the parameter Nux/(Grx)

1/5

have different dimensionless X coordinate. For pure water, coordinate
X = Xf = 100 corresponds, due to Eqs. (22) and (23), to the Grashof
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number Grx = 108. For the same Grashof number, the dimensionless coor-
dinate X is XT iO2 = 0.631Xf ; XAl2O3 = 0.668Xf and XCu = 0.494Xf ,
respectively for the considered nanofluids. As indicated in Fig. 4, the in-
tensity of heat exchange in micropolar fluid is significantly lower than in
corresponding nanofluids.

Figure 4: Transient changes of the local Nusselt number.

On the basis of calculated velocity field, a shear stress on a vertical plate
was determined. Taking into account constitutive equations for micropolar
fluid [1,2]

τw =
[

(µ + κ)
∂u

∂y
+ κN

]

|y=0
. (31)

After incorporation of dimensionless Eqs. (21)–(24) into the above one we
obtain

τw =
τw

ρ∞v2
∞

x2 52/5Gr
3/5
x (1 + ∆− n∆)

=
1

(5X)2/5
∂U

∂Y |y=0
. (32)
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In order to make a comparative analysis, Tab. 2 summarizes the Nus-
selt number values determined according to the formula (29) and the di-
mensionless shear stress in accordance with formula (32), obtained from
the numerical calculations performed for the variable parameters ∆, P , Pr
and constant parameter n (n = 0.5). The summarized results relate to the
steady state with the Grashof number 108, which is reached for the nanofluid
when dimensionless coordinate X is lower than X coordinate for pure water
(Xf = 100). This coordinate is measured along the vertical plate. Exact
values of the quotient X/Xf and Y/Yf (Tab. 1) were determined according
to relationships (1), (7), (9), (10), and (22), taking into account respective
values of thermophysical parameters of pure water and considered nanoflu-
ids. In Tab. 2 values with asterisk (*) were taken from [10]. Result from [10]
was compared with the exact analytical solution of conservation equations
for the Newtonian fluid.

Table 2: A comparison of results.

Pr ∆ P Nux/Gr
1

5
x τw

3.0 0.0 0.0 0.7108* 0.5054*

W 0.0 0.0 0.72091 0.47181

5.0 1.0 0.58602 0.22234

3.253 0.0 0.0 0.7252* 0.4918*

W + Al2O3 0.0 0.0 0.73755 0.45634

(38.4 nm) 2.580 2.238 0.64371 0.27699

3.460 0.0 0.0 0.7362* 0.4806*

W + TiO2 0.0 0.0 0.7492 0.44595

(27 nm) 2.310 2.515 0.66001 0.28093

3.8347 0.0 0.0 0.75493* 0.46020*

W + Cu 0.0 0.0 0.76869 0.42822

(10 nm) 1.375 4.102 0.70548 0.31111

* values taken from [10]

Figure 5 presents the dimensionless shear stress according to Eq. (32)
during natural convection. Presented curves are characteristic for the in-
dicated Prandtl number, parameters ∆, P , n = 0.5 and constant value of
Grashof number equal to 108. Before time τ = 30 the dimensionless shear
stress grows rapidly, and after time τ = 30 this shear stress on heated verti-
cal plate is determined by a constant value. This increase of the shear stress
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168 K. Rup and K. Nering

value is characteristic for the initial period of natural convection wherein
conductive heat exchange is significant. Due to the increase of ∆ and P val-
ues the dimensionless shear stress is decreasing similarly to the parameter
Nux/(Grx)

1/5, showed in Fig. 4.

Figure 5: Transient changes of dimensionless shear stress on vertical plate.

Heat transfer enhancement during natural convection in the considered
nanofluids is represented by the following equation:

E =

Nux

Gr1/5x

Nux

Gr1/5x

∣

∣

∣

∣

f

− 1 . (33)

Table 3 presents values of E parameters calculated with relationship (33)
for the considered nanofluid in the stationary case. In calculating of these
values the corresponding results from Tab. 2 were used. Maximum value of
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E parameter is found for the nanofluid with Cu nanoparticles with mean
diameter of 10 nm.

Table 3: Obtained values of the E parameter with respect to Eq. (33).

Fluid ∆ P Nux/Gr
1

5
x E [%]

W 0.0 0.0 0.72091f –

W + Al2O3 (38.4 nm) 0.0 0.0 0.73755 2.31

W + TiO2(27 nm) 0.0 0.0 0.7492 3.92

W + Cu (10 nm) 0.0 0.0 0.76869 6.70

W (micropolar) 5.0 1.0 0.58602f –

W + Al2O3(38.4 nm) 2.580 2.238 0.64371 9.8

W + TiO2(27 nm) 2.310 2.515 0.66001 12.6

W + Cu (10 nm) 1.375 4.102 0.70548 20.4

6 Concluding remarks and conclusion

In this paper, a process of heat and momentum exchange during natural
convection in nanofluids with micropolar properties was analyzed. To de-
scribe the analyzed phenomena of exchange, equations of hydrodynamic and
thermal boundary layer were used. It is worth noting that coupled system
of differential equations describing the analyzed exchange process also in-
cludes, in accordance with the boundary layer theory, a simplified equation
for the N microrotation component, arising from the angular momentum
principle. In order to solve this problem the method of finite difference was
applied. Obtained results were presented in graphs and in tables.

Parameter E describing the heat transfer enhancement between heated
plate and the nanofluid showed in Tab. 3, appears to have a maximum value
equal 6.7% which was obtained for the nanofluid with Cu nanoparticles with
the mean diameter of 10 nm and parameters ∆ and P equal to zero. For the
same fluid, relative decrease of temperature of the heated vertical plate was
σCu = 18.6% at the end of analyzed process in time τ = 80. For nanofluids
with Al2O3 nanoparticles with mean diameter 38.4 nm, relative decrease of
temperature of the heated vertical plate was only 9.6%.

Micropolar fluids are the fluids with nonzero values of ∆ and P param-
eters. These fluids are characterized by different behaviour during natural
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convection. Calculation results obtained in this work for fluids with param-
eters ∆ = 5.0 and P = 1.0 show that the dimensionless shear stress for
micropolar fluids on a heated plate has lower values than the corresponding
values for Newtonian fluid during the entire process of heating. Maximal
relative change of τw is equal to 52.7% (∆ = 5.0, P = 1.0) and maximal
relative change of Nux/(Grx)

1/5 value for micropolar fluid with respect to
Newtonian fluid equals 18.4%.

Significantly higher value of temperature of the heated plate can be
found after time τ = 10 in the vicinity of micropolar fluid which indi-
cates lower intensity of heat interception by the analyzed micropolar fluid
compared to the Newtonian fluid. The highest changes of microrotation
component N are observed before time τ = 10 at the beginning of the
process.

Received 18 June 2014
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