PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical and Laboratory Tests of Aluminum Profile Connection Using the "Popular Lock"

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminum profiles play an important role in civil engineering (facades, walls with windows) as well as in mechanical engineering (production lines, constructions of 3D printers and plotters). To ensure quick assembly, disassembly or changed the dimensions of constructions it is not possible to use such methods as welding, adhesive or riveting joints. The solution may be to use the so-called "popular lock”. It is a mechanism, the closure of which is caused by tightening of the conical screw, joining the "T" profile in the node. In order to properly design using the presented type of connection, it is necessary to know its strength and stiffness both in simple and complex loads states, also including imperfections. In the literature there is no information about the operation of the construction node with the so-called "popular lock”. The paper presents the results of experimental tests for connections subjected to uniaxial tensile test, paying special attention to the defects that may appear during the assembly. In the next step, a 3D solid connection model was created. Numerical simulations were performed in the Abaqus / Explicite program for both uniaxial tensile test and bending tests in two planes. Limit values of loads above which there is a plastic deformation of the material were determined. Determination of stiffness and strength of a single node allowed to make a simplified connector model. Using the numerical model, the analysis was performed taking into account the influence of imperfections on the work of the entire connection.
Twórcy
autor
  • Lublin University of Technology, Faculty of Civil Engineering and Architecture, Department of Solid Mechanics, 40 Nadbystrzycka Str., 20-618 Lublin, Poland
autor
  • Lublin University of Technology, Faculty of Civil Engineering and Architecture, Department of Solid Mechanics, 40 Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
  • [1] L.F.M. da Silva, P.J.C. das Neves, R. D. Adams, J. K. Spelt, Int. J. Adhes. & Adhes 29, 319-330, (2009).
  • [2] L.F.M. da Silva, P.J.C. das Neves, R. D. Adams, J. K. Spelt, Int. J. Adhes. & Adhes 29, 331-341 (2009).
  • [3] T. Sadowski, P. Golewski, M. Kneć, Comp. Struct. 112, 66-77 (2014).
  • [4] T. Sadowski, M. Kneć, P. Golewski, J. of Adhesion 90, 346-364 (2014).
  • [5] T. Sadowski, T. Balawender, Technology of Clinch - Adhesive Joints, in Hybrid adhesive joints. Advanced Structured Materials 6, Springer 2011, L.F.M. da Silva, A. Pirondi, A. Öschner (Eds), pp. 149-176.
  • [6] T. Balawender, T. Sadowski, J. Adhes. Sci. Technol. 25, 2391-2407 (2011).
  • [7] T. Balawender, T. Sadowski, P. Golewski, Comput. Mater. Sci. 64, 270-272 (2012).
  • [8] T. Sadowski, P. Golewski, Arch. Metall. Mat. 58, 581-587 (2013).
  • [9] P. Golewski, T. Sadowski, Int. J. Adhesion and Adhesives 77, 174-182 (2017).
  • [10] T. Sadowski, P. Golewski, V. Radoiu, Solid State Phenomena 254, 1-7 (2016).
  • [11] T. Sadowski, P. Golewski, Key Eng. Mater. 607, 49-54 (2014).
  • [12] T. Sadowski, M. Nowicki, D. Pietras, P. Golewski, Int. J. Adhesion and Adhesives 89, 72-81 (2019).
  • [13] D. Loveborn, J. K. Larsson, K. A. Persson, Physics Procedia 89, 89-99 (2017).
  • [14] L. Fiorino, V. Macillo, F. M. Mazzolani, Construc. Build. Mater. 73, 76-88 (2014).
  • [15] G. De Matteis, M. T. Naqash, G. Brando, Eng. Struct. 41, 548-561 (2012).
  • [16] L. Zhou, D. Zhang, L. Zhao, X. Zhou, J. Zhang, F. Liu, Mater. Design 98, 201-208 (2016).
  • [17] P. Lacki, K. Adamus, Comp. and Struct. 89, 977-985 (2011).
  • [18] P. Lacki, A. Derlatka, Comp. Struct. 159, 491-497 (2017).
  • [19] P. Lacki, J. Niemiro, Comp. Struct. 159, 538-547 (2017).
  • [20] K. Adamus, J. Adamus, J. Lacki, Comp. Struct. 202, 95-101 (2018).
  • [21] P. Lacki, A. Derlatka, Comp. Struct. 202, 201-209 (2018).
  • [22] P. Lacki, J. Nawrot, A. Derlatka, J. Winowiecka, Comp. Struct. 211, 244-253 (2019).
  • [23] Ch.-Ko. Chao, Ch.-Ch. Hsu, J.-L. ang, J. Lin, Clin. Biom. 22, 59-66 (2007).
  • [24] L. M. Alves, C.M.A. Silva, P.A.F. Martins, J. of Mat. Proc. Techn. 242, 196-204 (2017).
  • [25] N. Sase, K. Nishioka, S. Koga, H. Furii, J. of Mat. Proc. Techn. 77, 209-215 (1998).
  • [26] T. Markovits, A. Bauernhuber, M. Géczy, Phys. Proc. 39, 100-107 (2012).
  • [27] H. Dębski, T. Sadowski, Comput. Mater. Sci. 83, 403-411 (2014).
  • [28] G. Golewski, T. Sadowski, Constr. Build. Mater. 51, 207-214 (2014).
  • [29] L. Marsavina, E. Linul, D. M. Constantinescu, D. Apostol, T. Voiconi, T. Sadowski, Eng. Fract. Mech. 129, 54-66 (2014).
  • [30] M. Birsan, T. Sadowski, L. Marsavina, D. Pietras, Int. J. Solids Struct. 50, 519-530 (2013).
  • [31] T. Sadowski, J. Bęc, Comput. Mater. Sci. 50, 1269-1275 (2011).
  • [32] J. Gajewski, T. Sadowski, Comput. Mater. Sci. 82, 114-117 (2014).
  • [33] T. Sadowski, A. Neubrand, Int. J. Fract. 127, L135-L140 (2004).
  • [34] T. Sadowski, L. Marsavina, Comput. Mater. Sci. 50, 1336-1346 (2011).
  • [35] T. Sadowski, Comput. Mater. Sci. 64, 209-211 (2012).
  • [36] V. Burlayenko, H. Altenbach, T. Sadowski, S. D. Dimitrova, Comput. Mater. Sci. 116, 11-21 (2016).
  • [37] T. Sadowski, L. Marsavina, N. Peride, E. M. Craciun, Comput. Mat. Sci. 46, 687-693 (2009).
Uwagi
EN
1. This work was financially supported by Ministry of Science and Higher Education (Poland) within the statutory research number S/20/2018. The authors are grateful to dr M. Kneć for help in samples testing.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36e92572-f63d-4945-9ff9-ea79ba53a940
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.