PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of impeller shape on the gas bubbles dispersion in aluminium refining process

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The most popular method of aluminium refining is blowing of refining gas through the liquid metal. The way the refining gas is introduced to the liquid metal significantly influences the time and course of degassing process. Rotary impellers seem to be the best solution, especially taking into account reaching good level of gas dispersion in the liquid aluminium. However, the construction of impellers also influences the obtained gas dispersion in liquid metal, especially considering the processing parameters such as flow rate of refining gas and rotary impeller speed. Design/methodology/approach: To observe the phenomena occurring during the aluminium refining process physical modelling was applied. Test stand for such modelling was built at 1:1 scale with the transparent tank to observe the level of gas dispersion in the liquid. The built model has to fulfill the rules coming from the theory of similarity. Findings: The choice of optimal parameters is very important to the particular type of impeller. As a result of research the processing parameters were chosen to the appropriate type of gas dispersion. The most desirable type of dispersion is an uniform dispersion. According to the research the best impeller seems to be impeller No 1. Research limitations/implications: There are differences between results coming from modelling research and industrial test. So, the further research should be conducted with a chosen impeller in industrial conditions. Practical implications: From industrial point of view it is important to test the impeller construction and their geometry in laboratory before industrial test. It gives some ideas how the particular impeller will behave in industry. To control the process of aluminium refining and conducting it optimally it is really important to know its mechanism better. Originality/value: This paper presents original modelling research of aluminium refining process conducted in URO-200 reactor.
Słowa kluczowe
Rocznik
Strony
285--290
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Metallurgy Department, Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, ul. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] C.J. Simensen, G. Berg, A survey of inclusions in aluminium, Aluminium 56/5 (1980) 335-340.
  • [2] M. Saternus, J. Botor, Refining process of aluminium conducted in continuous reactor - physical model, Archives of Metallurgy and Materials 55/2 (2010) 463-475.
  • [3] M. Saternus, J. Botor, W. Wężyk, Modelling of aluminium refining process in the continuous reactor, Proceedings of the International Symposium on “Liquid Metal Processing and Casting” LMPC’2007, P.L. Lee, A. Mitchell, J.-P. Bellot, A. Jardy (Eds.), SF2M, 2007, 313-318.
  • [4] M. Saternus, J. Botor: Refining of aluminium and its alloys by means of inert gases, Ores and Non-Ferrous Metals 4/48 (2003) 154-160 (in Polish).
  • [5] S. Kato, Hydrogen in aluminium and aluminium alloys, Sumitomo Light Metal Technical Report 34/3 (1993) 59-77.
  • [6] S. Terai, M. Yosida, Developments in treatment of aluminium melts, Proceedings of the 8th Internationale Leichmetalltagung, Leoben-Wien, 1987, 236-243.
  • [7] Y. Ohno, D.T. Hampton, A.W. Moores, The GBF rotary system for total aluminium refining, Light Metals, Proceedings of Sessions, TMS Annual Meeting Warrendale 1993, 915-921.
  • [8] P.J. Flisakowski, J.M. McCollum, R.A. Frank, Improvements in cast shop processing using Pyrotek's HD-2000 and PHD-50 rotary injector system, Light Metals, Proceedings of Sessions, TMS Annual Meeting Warrendale, 2001, 1041-1047.
  • [9] G. Maeland, E. Myrbostad, K. Vegas, Hycast I-60 SIR -a new generation inline melt refining system, Light Metals, Proceedings of Sessions, TMS Annual Meeting Warrendale, 2002, 855-859.
  • [10] J.M. Chateau, Latest trends in molten metal in-line treatment, Aluminium Times, 04/05 (2003) 34-35.
  • [11] R. Tilak, J. Curiel, Aerospace alloy refining efficiency data for LARStm, Light Metals, Proceedings of Sessions, TMS Annual Meeting Warrendale, 2003, 881-884.
  • [12] J.Y. Oldshue, Fluid mixing technology, Chemical Engineering, McGraw-Hill Publications Co., New York, 1983.
  • [13] J.J.J. Chen, J.C. Zhao, Bubble distribution in a melt treatment water model, Light metals, Proceedings of Sessions, TMS Annual Meeting Warrendale, 1995, 1227-1231.
  • [14] J.J.J. Chen, J.C. Zhao, P.V. Lacey, T.N.H. Gray, Flow pattern detection in a melt treatment water model based on shaft power measurements, Light Metals, Proceedings of Sessions, TMS Annual Meeting Warrendale, 2001, 1021-1025.
  • [15] R. Hsi, M. Tay, D. Bukur, G. Tatterson, G. Morrison, Sound spectra of gas dispersion in agitated tank, Chemical Engineering Journal 31 (1985) 153-161.
  • [16] T.A. Sutter, G.L. Morrison, G.B. Tatterson: Sound spectra in an aerated agitated tank, A.I.Chem. Eng. Journal 33/44 (1987) 668-671.
  • [17] M.M.C.G. Warmoeskerken, J.M. Smith: Flooding of disco turbines in gas-liquid dispersion, A new description of the phenomena, Chemical Engineering Science 40 (1985) 2063-2071.
  • [18] M.L. Walker, J.C. Zhao, J.J.J. Chen, Bubble flow patterns detection in the water model of a metal treatment unit, Proceeding of the PACRIM Congress, The Australian Institute of Mining and Metallurgy, 1995, 605-609.
  • [19] J.J.J. Chen, J.C. Zhao, A non-intrusive method for flow pattern detection in gas-liquid reactors - gas supply line pressure fluctuation measurements, Proceedings of the IChemE Symposium Series 146 (1999) 295-303.
  • [20] J.J.J. Chen, J.C. Zhao, Gas line fluctuation analysis of a gasliquid reactor, Journal of Thermal Science 14/3 (2005) 267-271.
  • [21] J.L. Song, F. Chiti, W. Bujalski, A.W. Nienow, M.R. Jolly, Study of molten aluminium cleaning process using physical modeling and CFD, Light Metals, TMS (2004) 743-748.
  • [22] K.A. Carpenter, M.J. Hanagan: Efficiency modeling of rotary degasser head configurations and gas introduction methods, Part 1 - Water tank test, Light Metals, Proceedings of Sessions, TMS Annual Meeting Warrendale, 2001, 1017-1020.
  • [23] M. Warzecha, T. Merder, H. Pfeifer, J. Pieprzyca, Investigation of flow characteristics in a six-strand CC tundish combining plant measurements - physical and mathematical modelling, Steel Research International 81 (2010) 987-993.
  • [24] K. Michalek, K. Gryc, J. Moravka, Physical modelling of bath homogenization in argon stirred ladle, Metalurgija 48 (2009) 215-218.
  • [25] K. Michalek, Z. Hudziczek, K. Gryc, M. Tkadleckova: Study of homogenization and transfer processes in the casting ladle using physical modelling, Proceedings of the 19th International Conference on Metallurgy and Materials, 2010, 42-46.
  • [26] T. Merder, J. Pieprzyca, Numerical modelling of the influence subflux controller of turbulence on steel flow in the tundish, Metalurgija 4 (2011) 223-226.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36e8b8b8-3e6e-4c3a-a106-814b61d40315
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.