PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methodology for the Composite Tire Numerical Simulation Based on the Frequency Response Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reliability and maintenance analysis in transport focus on the main objective of accident and incident investigations that benefit to better understanding of the causes of accidents and prevention of them in the future. The conducted research presents theoretical and experimental research on composite pneumatic tire used in transport engineering. The approach of the numerical simulation sequence which is offered in this research facilitates engineers in efficient determination of the dynamic properties and behaviour of vehicle tire at design stage. The tire materials have been tested by employing piezoelectric micro-vibration tests and frequency analyses. The Finite Element Method used for numerical simulation in combination with experimental measurements based on optimization by material frequency response, was applied in modelling tire material behaviour avoiding problems of composite structure modelling. The obtained results indicate that the offered methodology can be used in numerical simulation of composite tire investigation and considering material viscos-elastic properties.
Rocznik
Strony
art. no. 163289
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab., wykr.
Twórcy
  • Department of Mobile Machinery and Railway, Vilnius Gediminas Technical University, Lithuania
  • Department of Mobile Machinery and Railway, Vilnius Gediminas Technical University, Lithuania
  • Department of Mobile Machinery and Railway, Vilnius Gediminas Technical University, Lithuania
Bibliografia
  • 1. Abe A, Kamegawa T, Nakajima Y. Optimization of construction of tire reinforcement by genetic algorithm. Optimization and Engineering 2004; 5: 77-92, https://doi.org/10.1023/B:OPTE.0000013636.82848.01
  • 2. Abohassan A, El-Basyouny K, Kwon T. Exploring the associations between winter maintenance operations, weather variables, surface condition, and road safety: A path analysis approach. Accident Analysis & Prevention 2021; 163: 1-10, https://doi.org/10.1016/j.aap.2021.106448
  • 3. Avril S, Bonnet M, Bretelle A. Overview of identification methods of mechanical parameters based on full-field measurements. Experimental Mechanics 2008; 48(4): 381-402, https://doi.org/10.1007/s11340-008-9148-y
  • 4. Baranowski P, Małachowski J, Mazurkiewicz L. Local blast wave interaction with tire structure. Defence Technology 2020; 16(3): 520-529, https://doi.org/10.1016/j.dt.2019.07.021
  • 5. Błażejewski W, Barcikowski M, Lubecki M, Stabla P, Bury P, Stosiak M, Lesiuk G. The mechanical investigation of Filament-Wound CFRP structures subjected to different cooling rates in terms of compressive loading and residual stresses - an experimental approach. Materials 2021; 14: 1-14, https://doi.org/10.3390/ma14041041
  • 6. Bogdevičius M, Karpenko M, Rožytė D. Methodology for determination coefficients values of the proposed rheological model for the tire tread. In: Prentkovskis O., Yatskiv (Jackiva) I., Skačkauskas P., Junevičius R., Maruschak P. (eds) TRANSBALTICA XII: Transportation Science and Technology. TRANSBALTICA 2021. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham. 2022; 16-27, https://doi.org/10.1007/978-3-030-94774-3_2
  • 7. Bogdevičius M, Karpenko M, Bogdevičius P. Determination of rheological model coefficients of pipeline composite material layers based on spectrum analysis and optimization. Journal of Theoretical and Applied Mechanics 2021; 59(2): 265-278, https://doi.org/10.15632/jtam-pl/134802
  • 8. Brown S, Vanlaar W, Robertson R. Winter tires: a review of research on effectiveness and use. Traffic Injury Research Foundation (TIRF) Report 2012; 50 p. [Available: https://www.drivesmartbc.ca/equipment/resource-winter-tires-review-research-effectiveness-and-use]
  • 9. Chen K, Yeh C. Preventing tire blowout accidents: a perspective on factors affecting drivers’ intention to adopt tire pressure monitoring system. Safety 2018; 4(16): 1-14, https://doi.org/10.3390/safety4020016
  • 10. European Commission, Joint Research Centre (JRC) Publications Repository: The Future of Road Transport. Publications office of the EU, JRC226644, 2019; 148 p. [Available: https://publications.jrc.ec.europa.eu/repository/handle/JRC116644]
  • 11. Fotios S, Gibbons R. Road lighting research for drivers and pedestrians: The basis of luminance and illuminance recommendations. Lighting Research & Technology 2018; 50(1):154-186, https://doi:10.1177/1477153517739055
  • 12. Hashamdar H, Ibrahim Z, Jameel. Finite element analysis of nonlinear structures with Newmark method. International Journal of the Physical Sciences 2011; 6(6): 1395-1403.
  • 13. Helnwein P, Liu CH, Meschke G, Mang HA. A new 3-D finite element model for cord-reinforced rubber composites – application to analysis of automobile tires. Finite Elem Anal Des 1993; 14:1–16. https://doi.org/10.1016/0168-874X(93)90075-2
  • 14. Ivanov R, Rusev R, Ilchev P. Laboratory investigation of tyre sliding grip coefficient. Transport 2006; 21(3): 172-181. https://doi.org/10.3846/16484142.2006.9638062
  • 15. Janulevičius A, Gurevičius P. Impact of the inflation pressure of the tires on lead of front drive wheels and movement resistance force of tractors. Transport 2019; 34(6): 628-638, https://doi.org/10.3846/transport.2019.11233
  • 16. Janulevičius A, Pupinis G, Lukštas J, Damanauskas V, Kurkauskas V. Dependencies of the lead of front driving wheels on different tire deformations for a MFWD tractor. Transport 2017; 32(1): 23–31, https://doi.org/10.3846/16484142.2015.1063084
  • 17. Jones R. Mechanics of composite materials. CRC Press 2014; 538p, ISBN 9781560327127
  • 18. Karpenko M. Investigation of energy efficiency of mobile machinery hydraulic drives. Dissertation, Vilnius Gediminas Technical University 2021; 164p. https://doi.org/10.20334/2021-028-M
  • 19. Karpenko M, Nugaras J. Vibration damping characteristics of the cork-based composite material in line to frequency analysis. Journal of Theoretical and Applied Mechanics 2022; 593-602, https://doi.org/10.15632/jtam-pl/152970
  • 20. Korunović N, Fragassab C, Marinkovićc D, Vitkovića N, Trajanović M. Performance evaluation of cord material models applied to structural analysis of tires. Composite Structures 2019; 224: 1-13, https://doi.org/10.1016/j.compstruct.2019.111006
  • 21. Kubit A, Trzepieciński T, Święch Ł, Fejkiel R. Experimental analysis of ultralight aircraft tyre behaviour under aircraft landing phase. Aviation 2022; 26(2): 124–129, https://doi.org/10.3846/aviation.2022.17000
  • 22. Lubecki M, Stosiak M, Bocian M, Urbanowicz K. Analysis of selected dynamic properties of the composite hydraulic microhose. Engineering Failure Analysis 2021; 125: 105431, https://doi.org/10.1016/j.engfailanal.2021.105431
  • 23. Makrygianni M. Aircraft accident evaluation using quality assessment tools. Aviation 2018; 22(2): 67-76, https://doi.org/10.3846/aviation.2018.5995
  • 24. Mayer P, Dmitruk A, Lubecki M, Stosiak M. Adhesion of epoxy coatings with micrometer size fillers to steel substrate. Journal of Theoretical and Applied Mechanics 2020; 58(2): 437-443, https://doi.org/10.15632/jtam-pl/118821
  • 25. Newmark N. A method of computation for structural dynamics. ASCE Journal of the Engineering Mechanics Division 1959; Vol. 85 No. EM3. https://doi.org/10.1061/JMCEA3.0000098
  • 26. Osueke E, Uguru-Okorie D. The role of tire in car crash, its causes and prevention. International Journal of Emerging Technology and Advanced Engineering 2012; 2(12): 55-57.
  • 27. Pokorski J, Sar H, Reński A. Influence of exploitation conditions on anti-skid properties of tyres. Transport 2019; 34(4): 415-424, https://doi.org/10.3846/transport.2019.10426
  • 28. Rievaj V, Faith P, Dávid A. (2006). Measurement by a cylinder test stand and tyre rolling resistance. Transport 2006; 21(1): 25-28, https://doi.org/10.3846/16484142.2006.9638036
  • 29. Ružinskas A, Giessler M, Gauterin F, Wiese K, Bogdevičius M. Experimental investigation of tire performance on slush. Eksploatacjai Niezawodnosc – Maintenance and Reliability 2021; 23(1): 103–109, http://dx.doi.org/10.17531/ein.2021.1.11
  • 30. Sapragonas J, Keršys A, Makaras R, Lukoševičius V, Juodvalkis D. Research of the influence of tire hydroplaning on directional stability of vehicle. Transport 2013; 28(4): 374-380, https://doi.org/10.3846/16484142.2013.865673
  • 31. United Nations Economic Commission: Statistics of road traffic accidents in Europe and North America. United Nations Publications (UNECE) 2021; vol. LVI: 185 p. [Available: https://unece.org/transport/publications/2021-statistics-road-traffic-accidents-europe-and-north-america]
  • 32. Vaitkus A, Andriejauskas T, Šernas O, Čygas D, Laurinavičius A. Definition of concrete and composite precast concrete pavements texture. Transport 2019; 34(3): 404-414, https://doi.org/10.3846/transport.2019.10411
  • 33. Wang W, Yan S, Zhao S. Experimental verification and finite element modelling of radial truck tire under static loading. Journal of Reinforced Plastics and Composites 2013; 32(7): 490-498, https://doi.org/10.1177/0731684412474998
  • 34. World Health Organization (WHO): European regional status report on road safety 2019. WHO Regional Office for Europe CCBY-NC-SA3.0IGO 2020; 133 p. [Available: https://apps.who.int/iris/handle/10665/336584]
  • 35. Zhu J, Han K, Wang S. Automobile tire life prediction based on image processing and machine learning technology. Advances in Mechanical Engineering 2021; 13(3): 1-13, https://doi.org/10.1177/16878140211002727
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36e55205-5c04-46b2-9786-ee3781be96cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.