PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Simultaneous component analysis as an interesting preliminary data analysis method in GC-MS – An example of headspace screening of Polish grasses

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
70 species of grasses family (Poaceae), coming from genera: Agrostis, Alopecurus, Anthoxanthum, Apera, Arrhenatherum, Avena, Brachypodium, Briza, Bromus, Calamagrostis, Corynephorus, Cynosurus, Dactylis, Danthonia, Deschampsia, Digitaria, Echinochloa, Elymus, Eragrostis, Festuca, Glyceria, Helictotrichon, Hierochloe, Holcus, Hordeum, Koeleria, Leymus, Lolium, Milium, Molinia, Nardus, Panicum, Phalaris, Phleum, Phragmites, Poa, Saccharum and Setaria, collected mostly from natural stands in Poland during 2020 season, were subjected to GC-MS fingerprinting of headspace volatile fraction above dried material. Obtained mass spectrometry data were analyzed by means of principal component analysis (PCA) and hierarchical cluster analysis (HCA). Five species: Glyceria maxima (Hartm.) Holmb., Lolium multiflorum Lam., Hordeum jubatum L., Bromus tectorum L. and Bromus secalinus L. were identified as outliers, which is consistent with our earlier analysis by thin layer chromatography. These species deserve further look and their outliance is orthogonal to coumarin content, which was independently observed for odorant species of grasses.
Rocznik
Strony
52--58
Opis fizyczny
Bibliogr. 41 poz., tab., wykr.
Twórcy
  • Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
autor
  • Botanical Garden of Maria Curie-Skłodowska University in Lublin, Sławinkowska 3, 20-810, Lublin, Poland
  • Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1A, 20-083, Lublin, Poland
  • Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
  • Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
Bibliografia
  • 1. Gagliano, J.; Anselmo-Moreira, F.; Sala-Carvalho, W. R.; Furlan, C. M. What is known about the medicinal potential of bamboo? Adv. Tradit Med. (ADTM) 2021. https://doi.org/10.1007/s13596-020-00536-5.
  • 2. Kumar, P.; Singh, S.; Sharma, A.; Kaur, G.; Kaur, R.; Singh, A. N.; Arundo Donax, L. An overview on its traditional and ethnomedicinal importance, phytochemistry, and pharmacological aspects. J. Herbmed Pharmacol. 2021, 10(3), 269–80. https://doi.org/10.34172/jhp.2021.31.
  • 3. Karami, S.; Yargholi, A.; Sadati Lamardi, S. N.; Soleymani, S.; Shirbeigi, L.; Rahimi*, R. A review of ethnopharmacology, phytochemistry and pharmacology of cymbopogon species. Res. J. Pharmacognosy 2021, 8(3), 83–112. https://doi.org/10.22127/rjp.2021.275223.1682.
  • 4. Ekpenyong, C. E.; Akpan, E.; Nyoh, A. Ethnopharmacology, phytochemistry, and biological activities of cymbopogon citratus (DC.) Stapf extracts. Chin. J. Nat. Medicines 2015, 13(5), 321–37. https://doi.org/10.1016/S1875-5364(15)30023-6.
  • 5. Oladeji, O. S.; Adelowo, F. E.; Ayodele, D. T.; Odelade, K. A. Phytochemistry and pharmacological activities of cymbopogon citratus: a review. Scientific Afr. 2019, 6, e00137. https://doi.org/10.1016/j.sciaf.2019.e00137.
  • 6. Singh, A.; Lal, U.; Mukhtar, H.; Singh, P.; Shah, G.; Dhawan, R. Phytochemical profile of sugarcane and its potential health aspects. Pharmacognosy Rev. 2015, 9(17), 45–54. https://doi.org/10.4103/0973-7847.156340.
  • 7. Gebashe, F.; Aremu, A. O.; Finnie, J. F.; Van Staden, J. Grasses in South African traditional medicine: a review of their biological activities and phytochemical content. South Afr. J. Bot. 2019, 122, 301–29. https://doi.org/10.1016/j.sajb.2018.10.012.
  • 8. Wang, Y.; McCaffrey, J.; Norwood, D. L. Recent advances in headspace gas chromatography. J. Liquid Chromatogr. Relat. Tech. 2008, 31(11–12), 182–51. https://doi.org/10.1080/10826070802129092.
  • 9. Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12(6), 523–6. https://doi.org/10.1038/nmeth.3393.
  • 10. Komsta, Ł. Chemometrics in fingerprinting by means of thin layer chromatography. Chromatogr. Res. Int. 2012, 2012, 1–5. https://doi.org/10.1155/2012/893246.
  • 11. González-Domínguez, R.; Sayago, A.; Fernández-Recamales, Á. Direct infusion mass spectrometry for metabolomic phenotyping of diseases. Bioanalysis 2017, 9(1), 131–48. https://doi.org/10.4155/bio-2016-0202.
  • 12. Westerhuis, J. A.; Kourti, T.; MacGregor, J. F. Analysis of multiblock and hierarchical PCA and PLS models. J. Chemometrics 1998, 12(5), 301–21. https://doi.org/10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S.
  • 13. Campos, M. P.; Reis, M. S. Data preprocessing for multiblock modelling – a systematization with new methods. Chemometrics Intell. Lab. Syst. 2020, 199, 103959. https://doi.org/10.1016/j.chemolab.2020.103959.
  • 14. Tanabe, K.; Hayashi, C.; Katahira, T.; Sasaki, K.; Igami, K. Multiblock metabolomics: an approach to elucidate whole-body metabolism with multiblock principal component analysis. Comput. Struct. Biotechnol. J. 2021, 19, 1956–65. https://doi.org/10.1016/j.csbj.2021.04.015.
  • 15. Chen, Y.; Zhang, M.; Zhang, Y.; Deng, Y.; Wei, Z.; Tang, X.; Liu, G.; Li, P. Effects of germination and extrusion on volatile flavor compounds in brown rice. Scientia Agricultura Sinica 2021, 54(1), 190–202. https://doi.org/10.3864/j.issn.0578-1752.2021.01.014.
  • 16. Hernandez, H. P.; Hsieh, T. C.-Y.; Smith, C. M.; Fischer, N. H. Foliage volatiles of two rice cultivars. Phytochemistry 1989, 28(11), 2959–62. https://doi.org/10.1016/0031-9422(89)80261-4.
  • 17. Nonato, E. A.; Carazza, F.; Silva, F. C.; Carvalho, C. R.; De Cardeal, Z. L. A headspace solid-phase microextraction method for the determination of some secondary compounds of Brazilian sugar cane spirits by gas chromatography. J. Agric. Food Chem. 2001, 49(8), 3533–9. https://doi.org/10.1021/jf000896r.
  • 18. Sides, A.; Robards, K.; Helliwell, S.; An, M. Changes in the volatile profile of oats induced by processing. J. Agric. Food Chem. 2001, 49(5), 2125–30. https://doi.org/10.1021/jf0010127.
  • 19. Cognat, C.; Shepherd, T.; Verrall, S. R.; Stewart, D. Comparison of two headspace sampling techniques for the analysis of off-flavour volatiles from oat based products. Food Chem. 2012, 134(3), 1592–600. https://doi.org/10.1016/j.foodchem.2012.02.119.
  • 20. Klensporf, D.; Jeleń H. H. Effect of heat treatment on the flavor of oat flakes. J. Cereal Sci. 2008, 48(3), 656–61. https://doi.org/10.1016/j.jcs.2008.02.005.
  • 21. Yang, Q.; Zhang, W.; Li, J.; Feng, B. Differentiation of fatty acid, aminno acid, and volatile composition in waxy and non-waxy proso millet. Food Sci. Technol. (Brazil) 2022, 42. https://doi.org/10.1590/fst.58320.
  • 22. Tatsu, S.; Matsuo, Y.; Nakahara, K.; Hofmann, T.; Steinhaus, M. Key odorants in Japanese roasted barley tea (Mugi-Cha) - differences between roasted barley tea prepared from naked barley and roasted barley tea prepared from hulled barley. J. Agric. Food Chem. 2020, 68(9), 2728–37. https://doi.org/10.1021/acs.jafc.9b08063.
  • 23. Valtiner, S. M.; Bonn, G. K.; Huck, C. W. Characterisation of different types of hay by solid-phase micro-extraction-gas chromatography mass spectrometry and multivariate data analysis. Phytochem. Anal. 2008, 19(4), 359–67. https://doi.org/10.1002/pca.1062.
  • 24. Mayland, H. F.; Flath, R. A.; Shewmaker, G. E. Volatiles from fresh and air-dried vegetative tissues of tall fescue (Festuca arundinacea Schreb.): relationship to cattle preference. J. Agric. Food Chem. 1997, 45(6), 2204–10. https://doi.org/10.1021/jf9701796.
  • 25. Saini, R.; Jaitak, V.; Guleria, S.; Kaul, V. K.; Babu, G. D. K.; Singh, B.; Lal, B.; Singh, R. D. Comparison of headspace analysis of volatile constituents with GC-MS analysis of hydrodistilled and supercritical fluid extracted oil of Capillipedium parviflorum. J. Essent. Oil Res. 2012, 24(3), 315–20. https://doi.org/10.1080/10412905.2012.677141.
  • 26. Bellik, F.-Z.; Benkaci-Ali, F.; Alsafra, Z.; Eppe, G. Effect of different parameters on volatile composition of the different parts of cymbopogon schoenanthus L. Spreng (poaceae) extracted by headspace solid-phase microextraction and hydrodistillation. J. Essent. Oil-Bearing Plants 2021, 24(4), 841–62. https://doi.org/10.1080/0972060X.2021.1960203.
  • 27. Deshmukh, Y.; Yadav, V.; Nigam, N.; Yadav, A.; Khare, P. Quality of bio-oil by pyrolysis of distilled spent of cymbopogon flexuosus. J. Anal. Appl. Pyrolysis 2015, 115, 43–50. https://doi.org/10.1016/j.jaap.2015.07.003.
  • 28. Svenberg, L.; Emmer, Å. Chemical diversity between three graminoid plants found in western Kenya analyzed by headspace solid-phase microextraction gas chromatography–mass spectrometry (Hs-Spme-Gc-Ms). Plants 2021, 10(11). https://doi.org/10.3390/plants10112423.
  • 29. Fiers, M.; Lognay, G.; Fauconnier, M.-L.; Jijakli, M. H. Volatile compound-mediated interactions between barley and pathogenic fungi in the soil. PLoS One 2013, 8(6). https://doi.org/10.1371/journal.pone.0066805.
  • 30. Dong, X.; Sun, L.; Agarwal, M.; Maker, G.; Han, Y.; Yu, X.; Ren, Y. The effect of ozone treatment on metabolite profile of germinating barley. Foods 2022, 11(9). https://doi.org/10.3390/foods11091211.
  • 31. Ming, T.; Qiu, D.; Zhou, J.; Li, Y.; Zhang, C.; Zhang, D.; Su, X. Analysis of the deodorization and aroma during fermentation of grass carp by lactobacillus plantarum. J. Chin. Inst. Food Sci. Technol. 2017, 17(10), 202–10. https://doi.org/10.16429/j.1009-7848.2017.10.027.
  • 32. Chmelová, Š.; Tříska, J.; Růžičková, K.; Kalač, P. Determination of volatile compounds in grass and maize silages using SPME and GC-MS [Stanovení těkavých látek v. travních a. kukuřičných silážích mikroextrakcí, na pevné fázi a. plynovou, chromatografií s. hmotnostně-spektrometrickou detekcí]. Chemicke Listy 2008, 102(12), 1138–44.
  • 33. Rivero, M. J.; Keim, J. P.; Balocchi, O. A.; Lee, M. R. F. In Vitro fermentation patterns and methane output of perennial ryegrass differing in water-soluble carbohydrate and nitrogen concentrations. Animals 2020, 10(6), 1– 16. https://doi.org/10.3390/ani10061076.
  • 34. Fu, S.-G.; Yoon, Y.; Bazemore, R. Aroma-active components in fermented bamboo shoots. J. Agric. Food Chem. 2002, 50(3), 549–54. https://doi.org/10.1021/jf010883t.
  • 35. Zheng, J.; Zhang, F.; Zhou, C.; Lin, M.; Kan, J. Comparison of flavor compounds in fresh and pickled bamboo shoots by GC-MS and GC-olfactometry. Food Sci. Technol. Res. 2014, 20(1), 129–38. https://doi.org/10.3136/fstr.20.129.
  • 36. Mothes, F.; Reiche, N.; Fiedler, P.; Moeder, M.; Borsdorf, H. Capability of headspace based sample preparation methods for the determination of methyl tert-butyl ether and benzene in reed (Phragmites australis) from constructed wetlands. Chemosphere 2010, 80(4), 396–403. https://doi.org/10.1016/j.chemosphere.2010.04.024.
  • 37. Wróbel-Szkolak, J.; Cwener, A.; Komsta, Ł. Data fusion from several densitometric modes in fingerprinting of 70 grass species. JPC-J Planar Chromat 2022, 35(3), 287–97. https://doi.org/10.1007/s00764-022-00180-6.
  • 38. Levin, J. Simultaneous factor Analysis of several gramian matrices. Psychometrika 1966, 31(3), 413–9. https://doi.org/10.1007/BF02289472.
  • 39. Gower, J. C. Generalized Procrustes analysis. Psychometrika 1975, 40(1), 33–51. https://doi.org/10.1007/BF02291478.
  • 40. Pagès, J. Collection and analysis of perceived product inter-distances using Multiple factor Analysis: application to the study of 10 white wines from the Loire valley. Food Qual. Preference 2005, 16(7), 642–9. https://doi.org/10.1016/j.foodqual.2005.01.006.
  • 41. Smilde, A. K.; Måge, I.; Næs, T.; Hankemeier, T.; Lips, M. A.; Kiers, H. A. L.; Acar, E.; Bro, R. Common and distinct components in data fusion. J. Chemometrics 2017, 31(7), e2900. https://doi.org/10.1002/cem.2900.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36e332aa-9d52-4d97-86ab-0339f00eff29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.