PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Analysis of Support Systems of Underground Stormwater Basin Using a Multi-Criteria Analysis and Modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper illustrates the importance of integrating buried stormwater ponds into underground development plans using a multi-criteria analysis and modeling for the selection of support in urban underground constructions, applied to the case study of buried stormwater ponds. This study underlines the importance of careful planning and the use of the technique for order of preference by similarity to ideal solution (TOPSIS) in the selection of support for underground stormwater basins in urban environments. The TOPSIS method led to the selection of diaphragm walls as the optimum solution, illustrating its effectiveness in evaluating alternatives based on a variety of criteria. diaphragm wall modeling using robot structural analysis (RSA) software validated this choice and accurately predicted the structure’s behavior, underlining the importance of numerical tools in engineering decision-making. The analysis of wall displacements, carried out using these tools, confirmed their compliance with standards, validating the choice of cast walls and highlighting the need for continuous monitoring to guarantee the stability of the structures.
Twórcy
  • 3GIE Laboratory, Mohammadia School of Engineers, Mohammed V University, Rabat, Morocco
  • 3GIE Laboratory, Mohammadia School of Engineers, Mohammed V University, Rabat, Morocco
autor
  • 3GIE Laboratory, Mohammadia School of Engineers, Mohammed V University, Rabat, Morocco
Bibliografia
  • 1. ACI, 2019. ACI CODE-318-19(22): Building Code Requirements for Structural Concrete and Commentary (Reapproved 2022).
  • 2. AFNOR, 2009. Afnor Editions.
  • 3. Audi, Y., 2016. Développement d’une méthodologie d’évaluation au sens du développement durable des aménagements souterrains (phdthesis). École centrale de Nantes.
  • 4. Barles, S., Jardel, S., 2005. L’urbanisme souterrain: étude comparée exploratoire 100.
  • 5. Barroca, B., 2019. Espaces souterrains et synergies spatiales. Communications 105, 195–205. https://doi.org/10.3917/commu.105.0195
  • 6. Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J., 2012. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 39, 13051–13069.
  • 7. Bennis, K., Bahi, L., 2016. Application de la logique floue à l’aide à la décision participative pour l’évaluation de l’impact sur l’environnement – cas de Tanger. J. Decis. Syst. 25, 56–78. https://doi.org/10.1080/12460125.2015.1108158
  • 8. Bobylev, N., 2016a. Transitions to a High Density Urban Underground Space. Procedia Eng. 165, 184–192. https://doi.org/10.1016/j.proeng.2016.11.750
  • 9. Bobylev, N., 2016b. Underground space as an urban indicator: Measuring use of subsurface. Tunn. Undergr. Space Technol. 55, 40–51. https://doi.org/10.1016/j.tust.2015.10.024
  • 10. Bobylev, N., 2010. Underground space in the Alexanderplatz area, Berlin: Research into the quantification of urban underground space use. Tunn. Undergr. Space Technol. 25, 495–507. https://doi.org/10.1016/j.tust.2010.02.013
  • 11. Bobylev, N., 2009. Mainstreaming sustainable development into a city’s Master plan: A case of Urban Underground Space use. Land Use Policy 26, 1128–1137. https://doi.org/10.1016/j.landusepol.2009.02.003
  • 12.Bobylev, N., Sterling, R., 2016a. Urban underground space: A growing imperative: Perspectives and current research in planning and design for underground space use. Tunn. Undergr. Space Technol., Urban Underground Space: A Growing Imperative Perspectives and Current Research in Planning and Design for Underground Space Use 55, 1–4. https://doi.org/10.1016/j.tust.2016.02.022
  • 13.Bobylev, N., Sterling, R., 2016b. Urban underground space: A growing imperative. Tunn. Undergr. Space Technol. 55, 1–4. https://doi.org/10.1016/j.tust.2016.02.022
  • 14. Bouchaqour, M., Ouadif, L., Bahi, L., 2022a. Assessing and Analysing the Potential of Urban Subsoil: A Case Study of Rabat, Morocco. Int. J. Eng. Trends Technol. 70, 192–198. https://doi.org/10.14445/22315381/IJETT-V70I1P222
  • 15.Bouchaqour, M., Ouadif, L., Bahi, L., 2022b. Assessing and Analysing the Potential of Urban Subsoil: A Case Study of Rabat, Morocco. Int. J. Eng. Trends Technol. 70, 192–198. https://doi.org/10.14445/22315381/IJETT-V70I1P222
  • 16. Broere, W., 2016. Urban underground space: Solving the problems of today’s cities. Tunn. Undergr. Space Technol. 55, 245–248. https://doi.org/10.1016/j.tust.2015.11.012
  • 17.Burns, D., Vitvar, T., McDonnell, J., Hassett, J., Duncan, J., Kendall, C., 2005. Effects of suburban development on runoff generation in the Croton River basin, New York, USA. J. Hydrol. 311, 266–281. https://doi.org/10.1016/j.jhydrol.2005.01.022
  • 18. Darwin, D., Dolan, C.W., Nilson, A.H., 2016. Design of concrete structures, Fifteenth edition. ed. McGraw-Hill Education, New York, NY.
  • 19. Dasgupta, A., 2021. State of the Art Design to Strengthen Upstream Slope of a Hydroelctricity Dam with Integrated Micro & O-Pile -A Case Study. https://doi.org/10.13140/RG.2.2.20672.25606
  • 20. Dayaratne, S.T., 2000. Modelling of Urban Stormwater Drainage Systems Using Ilsax.
  • 21. Drake, J., Young, D., McIntosh, N., 2016. Performance of an Underground Stormwater Detention Chamber and Comparison with Stormwater Management Ponds. Water 8, 211. https://doi.org/10.3390/w8050211
  • 22. ElHachmi, D., 2010. Nouvelles Approches Pour Le Diagnostic Et La Restauration Des Monuments Historiques Au Maroc - Cas De L’enceinte De La Medina De Sale. Université Mohammed V - Rabat, Ecole Mohammadia d’Ingénieur.
  • 23. Elhachmi, D., Bahi, L., Ouadif, L., Bahi, A., 2020. Evaluation of Historical Portals Using AHP and TOPSIS – Case of Salé Medina in Morocco.
  • 24. Eurocode2, 1992. Eurocode 2 - calcul des structures en beton.
  • 25. Falcon, Y., 2011. Les ouvrages de génie civil des stations d’épuration des petites collectivités: conception et dimensionnement rapide.
  • 26. Gache, F., Städler, M., Brun, A., 2017. Paris, London, Berlin: 3 Metropolises facing the challenges of Urban Waters. Upl.-J. Urban Plan. Landsc. Environ. Des. 2, 231–240.
  • 27. Gumus, A.T., 2009. Evaluation of hazardous waste transportation firms by using a two step fuzzy-AHP and TOPSIS methodology. Expert Syst. Appl. 36, 4067–4074. https://doi.org/10.1016/j.eswa.2008.03.013
  • 28. Guoguang, L., Yongchao, S., Ming, L., 2015. Analysis based on research on urban underground space development and utilization. J. Jilin Jianzhu Univ. Issue 5 2015 32, 9–12.
  • 29. Gwilym, K., Phillips, J., Burke, S., Staeheli, P., 2016. Protecting Puget Sound from CSOs by retrofitting Urban Neighborhoods with Green Stormwater Infrastructure. Salish Sea Ecosyst. Conf.
  • 30. Hammitt, S.A., Sarah A., 2010. Toward sustainable stormwater management : overcoming barriers to green infrastructure (Thesis). Massachusetts Institute of Technology.
  • 31. Hwang, C.-L., Yoon, K., Hwang, C.-L., Yoon, K., 1981. Methods for multiple attribute decision making. Mult. Attrib. Decis. Mak. Methods Appl. State---Art Surv., 58–191.
  • 32.Johns, C.M., 2019. Understanding barriers to green infrastructure policy and stormwater management in the City of Toronto: a shift from grey to green or policy layering and conversion? J. Environ. Plan. Manag. 62, 1377–1401. https://doi.org/10.1080/09640568.2018.1496072
  • 33. Kolymbas, D., 2005. Tunnelling and Tunnel Mechanics: A Rational Approach to Tunnelling. Springer Science & Business Media.
  • 34. Kornelsen, K.C., Coulibaly, P., 2014. Synthesis review on groundwater discharge to surface water in the Great Lakes Basin. J. Gt. Lakes Res. 40, 247–256. https://doi.org/10.1016/j.jglr.2014.03.006
  • 35. Labbé, M., 2016. Architecture of underground spaces: From isolated innovations to connected urbanism. Tunn. Undergr. Space Technol., Urban Underground Space: A Growing Imperative Perspectives and Current Research in Planning and Design for Underground Space Use 55, 153–175. https://doi.org/10.1016/j.tust.2016.01.004
  • 36. Lima, F.R., Carpinetti, L.C.R., 2016. Evaluating supply chain performance based on SCOR® model and fuzzy-TOPSIS, In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2075–2082.
  • 37. Mariame Bouchaqour, L.O., 2023. Optimizing The Exploitation of Uus Using Ahp: a Case Study of Rabat’s City Underground Space, Morocco. J. South-west Jiaotong Univ. 58.
  • 38. Mavrikos, A., Kaliampakos, D., 2021. An integrated methodology for estimating the value of underground space. Tunn. Undergr. Space Technol. 109, 103770. https://doi.org/10.1016/j.tust.2020.103770
  • 39. McPhillips, L.E., Matsler, A.M., 2018. Temporal Evolution of Green Stormwater Infrastructure Strategies in Three US Cities. Front. Built Environ. 4, 26. https://doi.org/10.3389/fbuil.2018.00026
  • 40. Ménard, M.C., 2022. Rediscovery and Enhancement of the Inhabited But Fragile Cave-Dwelling Heritage in The Val De Loire: Turquant. Firenze.
  • 41. Méndez, M., Galván, B., 2007. Multi-objective evolutionary algorithms using the working point and the TOPSIS method, In: Computer Aided Systems Theory–Eurocast 2007: 11th International Conference on Computer Aided Systems Theory, Las Palmas de Gran Canaria, Spain, February 12-16, 2007, Revised Selected Papers 11. Springer, pp. 796–803.
  • 42. Méndez, M., Galván, B., Salazar, D., Greiner, D., 2009. Multiple-objective genetic algorithm using the multiple criteria decision making method topsis, in: Multiobjective Programming and Goal Programming: Theoretical Results and Practical Applications. Springer, pp. 145–154.
  • 43. Nejjar, K., 2019. Comportement des parois de soutènement dans un contexte exceptionnel(grande profondeur, formations déformables, environnement sensible).: Application à la gare Fort d’Issy-Vanves-Clamart du Grand Paris Express et comparaison avec les mesures réalisées sur site.
  • 44. Nordmark, A., 2002. Overview on survey of water installations underground: underground water-conveyance and storage facilities. Tunn. Undergr. Space Technol.
  • 45. Olarewaju, A.J., 2010. Response of Underground Pipes due to Blast Loads by Simulation – An Overview 15.
  • 46. Ouyang, W.-H., Yang, Y., Wan, J.-H., Liu, S.-W., 2020. Second-Order Analysis of Steel Sheet Piles by Pile Element Considering Nonlinear Soil-Structure Interactions. The Hong Kong Institute of Steel Construction. https://doi.org/10.18057/IJASC.2020.16.4.8
  • 47. Pan, Y., Fang, H., Li, B., Wang, F., 2019. Stability analysis and full-scale test of a new recyclable supporting structure for underground ecological granaries. Eng. Struct. 192, 205–219. https://doi.org/10.1016/j.engstruct.2019.04.087
  • 48. Puller, M., 2003. Deep Excavations: A Practical Manual. Thomas Telford.
  • 49. Sebastian, C., 2013. Bassin de retenue des eaux pluviales en milieu urbain: performance en matière de piégeage des micropolluants.
  • 50. Seçme, N.Y., Bayrakdaroğlu, A., Kahraman, C., 2009. Fuzzy performance evaluation in Turkish banking sector using analytic hierarchy process and TOPSIS. Expert Syst. Appl. 36, 11699–11709.
  • 51. Stovin, V.R., Moore, S.L., Wall, M., Ashley, R.M., 2013. The potential to retrofit sustainable drainage systems to address combined sewer overflow discharges in the T hames T ideway catchment. Water Environ. J. 27, 216–228.
  • 52. Walsh, C.J., Fletcher, T.D., Ladson, A.R., 2005. Stream restoration in urban catchments through redesigning stormwater systems: looking to the catchment to save the stream. J. North Am. Benthol. Soc. 24, 690–705. https://doi.org/10.1899/04-020.1
  • 53. Webber, J.L., Fletcher, T.D., Cunningham, L., Fu, G., Butler, D., Burns, M.J., 2020. Is green infrastructure a viable strategy for managing urban surface water flooding? Urban Water J. 17, 598–608. https://doi.org/10.1080/1573062X.2019.1700286
  • 54. Wight, J.K., MacGregor, J.G., 2012. Reinforced Concrete: Mechanics and Design.
  • 55. Xie, H., Zhang, Y., Chen, Y., Peng, Q., Liao, Z., Zhu, J., 2021. A case study of development and utilization of urban underground space in Shenzhen and the Guangdong-Hong Kong-Macao Greater Bay Area. Tunn. Undergr. Space Technol. 107, 103651. https://doi.org/10.1016/j.tust.2020.103651
  • 56. Yang, F.-R., Lee, C.-H., Kung, W.-J., Yeh, H.-F., 2009. The impact of tunneling construction on the hydrogeological environment of “Tseng-Wen Reservoir Transbasin Diversion Project” in Taiwan. Eng. Geol. 103, 39–58.
  • 57. Yang, T., Hung, C.-C., 2007. Multiple-attribute decision making methods for plant layout design problem. Robot. Comput.-Integr. Manuf. 23, 126–137.
  • 58. Yezza, A., 2017. La méthodé TOPSIS éxpliquéé pas a pas, uné varianté proposéé 24.
  • 59. Zanakis, S.H., Mandakovic, T., Gupta, S.K., Sahay, S., Hong, S., 1995. A review of program evaluation and fund allocation methods within the service and government sectors. Socioecon. Plann. Sci. 29, 59–79.
  • 60. Zanakis, S.H., Solomon, A., Wishart, N., Dublish, S., 1998. Multi-attribute decision making: A simulation comparison of select methods. Eur. J. Oper. Res. 107, 507–529.
  • 61. Zolfani, S.H., Rezaeiniya, N., Pourhossein, M., Zavadskas, K., 2012. Decision making on advertisement strategy selection based on life cycle of products by applying FAHP and TOPSIS GREY: Growth stage perspective; a case about food industry in Iran. Eng. Econ. 23, 471–484.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36ded58d-38a8-4bed-99be-d2def5dd92ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.