PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seismic attribute analysis of Chicxulub impact crater

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chicxulub crater formed~66 Ma ago by an asteroid impact on the Yucatan platform in the southern Gulf of Mexico. The crater has a ~ 200 km rim diameter and has been covered by carbonate sediments up to ~ 1.1 km thick in the central zone. Previous studies have identifed the structure and major crater units through geophysical models from seismic refection and potential feld data, classifed as the central uplift, terrace zone, outer and inner ring fault zones and impactite deposits. Impact produced a deep excavation cavity, with fragmentation and ejection of large volumes of crustal target rocks. Understanding the pre-existing structures, impact-induced deformation and post-impact processes requires high-resolution images of the crater and target zone. For this study, we use complex trace attributes of instantaneous phase, frequency, envelope amplitude and similarity, in an E-W seismic refection profle crossing the crater in the marine sector. Geophysical logs and borehole lithological columns from the on-land drilling projects are used to constrain the petrophysical analysis. Seismic attributes aid to characterize the radial fault zones and physical property contrasts, revealing asymmetries in the crater structure. The refector packages in the post-impact sediments and target Cretaceous sequence are identifed in the frequency and phase attributes. The bottom crater refectors, with the basal sediments flling the crater foor topography, are enhanced with the envelope amplitude attribute. A set of high-amplitude refectors is shown in the similarity attribute, in which the refector geometry is delineated on the target carbonate sequence. The ofsets in the high-amplitude refectors between the eastern and western sectors are possibly associated to target pre-impact asymmetries, impact deformation and efects of central crater collapse.
Czasopismo
Rocznik
Strony
627--640
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
  • Facultad de Ingeniería, Universidad Autónoma del Carmen, Ciudad del Carmen 24180, Campeche, México
  • Programa Universitario de Perforaciones en Océanos y Continentes, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, México
  • Coordinación de Plataformas Oceanográfcas, Coordinación de la Investigación Científca, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, México
  • Programa Universitario de Perforaciones en Océanos y Continentes, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, México
  • Instituto de Investigación Científca y Estudios Avanzados Chicxulub, Parque Científco y Tecnológico de Yucatán, Sierra Papacal, Mérida 97302, Yucatán, México
Bibliografia
  • 1. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the cretaceous-tertiary extinction. Science 208:1095–1108
  • 2. Barnes AE (2007) A tutorial on complex seismic trace analysis. Geophys 72(6):W33–W43. https://doi.org/10.1190/1.2785048
  • 3. Barton PJ, Grieve RAF, Morgan JV, Surendra AT, Vermeesch PM, Christeson GL, Gulick SPS, Warner MR (2010) Seismic images of Chicxulub impact melt sheet and comparison with the sudbury structure. Geol Soc Am Spec Pap 465:103–113. https://doi.org/10.1130/2010.2465(07)
  • 4. Batista J, Pérez-Flores MA, Urrutia-Fucugauchi J (2013) Three-dimensional gravity modeling of Chicxulub Crater structure, constrained with marine seismic data and land boreholes. Earth Planets Space 65:973–983
  • 5. Bell C, Morgan J, Hampson GJ, Trudgill B (2004) Stratigraphic and sedimentological observations from seismic data across the Chicxulub impact basin. Meteorit Planet Sci 39:1089–1098
  • 6. Canales-Garcia I, Urrutia-Fucugauchi J, Aguayo-Camargo E (2018) Seismic imaging and attribute analysis of Chicxulub crater central sector, Yucatan platform, Gulf of Mexico. Geol Acta 16:215–235
  • 7. Chopra S, Marfurt KJ (2005) Seismic attributes—a historical perspective. Geophys 70:3SO–28SO
  • 8. Chopra S, Marfurt KJ (2008) Emerging and future trends in seismic attributes. Lead Edge 27:298–318. https://doi.org/10.1190/1.2896620
  • 9. Collins GS, Melosh HJ, Ivanov BA (2004) Modeling damage and deformation in impact simulations. Meteorit Planet Sci 39(2):217–231
  • 10. Collins GS, Morgan J, Barton P, Christeson GL, Gulick S, Urrutia-Fucugauchi J, Warner M, Wünnemann K (2008) Dynamic modeling suggests terrace zone asymmetry in the Chicxulub crater is caused by target heterogeneity. Earth Planet Sci Lett 270:221–230. https://doi.org/10.1016/j.epsl.2008.03.032
  • 11. Connors M, Hildebrand AR, Pilkington M, Ortíz C, Chávez R, Urrutia-Fucugauchi J, Graniel-Castro E, Camara-Zi A, Vasquez J, Halpenny JF (1996) Yucatan karst features and the size of Chicxulub crater. Geophys J Int 127:F11–F14
  • 12. Christeson GL et al (2018) Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density and porosity measurements from IODP/ICDP expedition 364. Earth Planet Sci Lett 495:1–11
  • 13. French CD, and Schenk CJ (2004) Map showing geology, oil and gas fields, and geologic provinces of the Caribbean region. US geological survey open-file report 97–470-K, CD-ROM
  • 14. Gulick S, Barton P, Christeson G, Morgan J, McDonald M, Mendoza K, Pearson Z, Surendra A, Urrutia-Fucugauchi J, Vermeesch P, Warner M (2008) Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater. Nat Geosci 1:131–135. https://doi.org/10.1038/ngeo103
  • 15. Gulick SPS, Christeson GL, Barton PJ, Grieve R, Morgan J, Urrutia-Fucugauchi J (2013) Geophysical characterization of the Chicxulub impact crater. Rev Geophys 51:31–52. https://doi.org/10.1002/rog.20007
  • 16. Hildebrand AR, Penfield G, Kring DA, Pilkington M, Camargo-Zanoguera A, Jacobsen SB, Boynton WV (1991) Chicxulub Crater: a possible cretaceous/tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19:867–871
  • 17. Hildebrand AR, Pilkington M, Ortiz-Aleman C, Chavez RE, Urrutia-Fucugauchi J, Connors M, Graniel-Castro E, Niehaus D (1998) Mapping Chicxulub crater structure with gravity and seismic reflection data. In: Graddy MM, Hutchinson R, McCall GJH, Rotherby DA (eds) Meteorites: flux with time and impact effects, 140th edn. Geological Society, London, Special Publications, pp 155–176
  • 18. Hippertt JP, Lana C, Weinberg RF, Tohver E, Schmieder M, Scholz R, Goncalves L, Hippertt JF (2014) Liquefaction of sedimentary rocks during impact crater development. Earth Planet Sci Lett 408:285–295
  • 19. Kenkmann T, Poelchau MH, Wulf G (2014) Structural geology of impact craters. J Struct Geol 62:156–182
  • 20. Kring DA, Horz L, Zurcher L, Urrutia-Fucugauchi J (2004) Impact lithologies and their emplacement in the Chicxulub impact crater: Initial results from the Chicxulub scientific drilling project, Yaxcopoil, Mexico. Meteorit Planet Sci 39:879–897
  • 21. Liu J, Marfurt KJ (2007) Instantaneous spectral attributes to detect channels. Geophysics 72(2):P23–P31
  • 22. Lopez Ramos E (1975) Geological summary of the Yucatan peninsula. In: Nairn AEM, Stehli FG (eds) The Ocean Basins and Margins, The Gulf of Mexico and the Caribbean, vol 3. Plenum, New York, pp 257–282
  • 23. Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, New York, 245 pp
  • 24. Melosh HJ, Ivanov BA (1999) Impact crater collapse. Ann Rev Earth Planet Sci 27:385–415
  • 25. Melosh HJ, Gaffney ES (1983) Acoustic fluidization and the scale dependence of impact crater morphology. J Geophys Res Suppl 88:A830–A834
  • 26. Melosh HJ, Ryan EV, Asphaug E (1992) Dynamic fragmentation in impacts: hydrocode simulation of laboratory impacts. J Geophys Res 97:14735–14759
  • 27. Morgan J, Werner M, Chicxulub Group (1997) Size and morphology of the Chicxulub impact crater. Nature 390:472–476
  • 28. Morgan JV, Warner M, Collins GS, Melosh HJ, Christeson GL (2000) Peak ring formation in large impact craters: geophysical constraints from Chicxulub. Earth Planet Sci Lett 183:347–354
  • 29. Morgan JV, Warner M, Urrutia-Fucugauchi J, Gulick S, Christeson G, Barton P, Rebolledo-Vieyra M (2005) Chicxulub crater seismic survey prepares way for future drilling. EOS Trans Am Geophys Union 86:325–332
  • 30. Morgan JV, Gulick SPS, Bralower T, Chenot E, Christeson G, Claeys P et al (2016) The formation of peak rings in large impact craters. Science 354:878–882. https://doi.org/10.1126/science.aah6561
  • 31. Morgan J, Gulick S, Mellett CL, Green SL The Expedition 364 Scientists (2017) Chicxulub: drilling the k-pg impact crater. In: Proceedings of the international Ocean discovery program, 364: college station, TX (International Ocean Discovery Program) https://doi.org/10.14379/iodp.proc.364.2017
  • 32. Ortiz-Aleman C, Urrutia-Fucugauchi J (2010) Aeromagnetic anomaly modeling of central zone structure and magnetic sources in the Chicxulub crater. Phys Earth Planet Inter 179:127–138. https://doi.org/10.1016/j.pepi.2010.01.007
  • 33. Penfield GT, Camargo-Zanoguera A (1981) Definition of a major igneous zone in the central Yucatán platform with aeromagnetics and gravity. In: Society of exploration. Geophysicists annual meeting, technical program. Abstracts, 51st Annual meeting, 37 (abstract)
  • 34. Pilkington M, Hildebrand AR (2000) Three-dimensional magnetic imaging of the Chicxulub crater. J Geophys Res 105:23479–23491
  • 35. Ramirez-Cruz L, del Valle-Garcia R, Urrutia-Fucugauchi J (2005) Enhanced oil production in a mature field assisted by spectral attenuation analysis. J Geophys Eng 2:48–53
  • 36. Rebolledo-Vieyra M, Urrutia-Fucugauchi J, Lopez-Loera H (2010) Aeromagnetic anomalies and structural model of the Chicxulub impact crater, Yucatán, Mexico. Rev Mex de Cienc Geol 27:185–195
  • 37. Riller U, Pelchau M, Rae A, Schulte F, Collins G, Melosh J, Grieve R, Morgan J, Gulick S, Lofi J, Diaw A, McCall N, Kring D, IODP-ICDP Expedition 364 Science Party (2018) Rock fluidization during peak-ring formation of large impact structures. Nature. https://doi.org/10.1038/s41586-018-0607-z
  • 38. Salguero-Hernández E, Urrutia-Fucugauchi J, Ramírez-Cruz L (2010) Fracturing and deformation in the Chicxulub crater - Complex trace analysis of instantaneous seismic attributes. Rev Mex de Cienc Geol 27(1):175–184
  • 39. Schulte P, Alegret L, Arenilla I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL, Claeys P, Cockell CS, Collins GS, Deutsch A, Goldin TJ, Goto K, Grajales-Nishimura JM, Grieve RAF, Gulick SPS, Johnson KR, Kiessling W, Koeberl C, Kring DA, MacLeod KG, Matsui T, Melosh J, Montanari A, Morgan JV, Neal CR, Nichols DJ, Norris RD, Pierazzo E, Ravizza R, Rebolledo-Vieyra M, Reimold WU, Robin R, Salge T, Speijer RP, Sweet AR, Urrutia-Fucugauchi J, Vajda V, Whalen MT, Willumsen PS (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327:1214–1218
  • 40. SchultzD´Hondt PHS (1996) Cretaceous-tertiary (Chicxulub) impact angle and its consequences. Geology 24:963–967
  • 41. Sharpton VL, Dalrymple G, Marin L, Ryder G, Schuraytz B, Urrutia-Fucugauchi J (1992) New links between the Chicxulub impact structure and the cretaceous/tertiary boundary. Nature 359:819–821
  • 42. Sharpton VL, Burke K, Camargo-Zanoguera A, Hall SA, Lee S, Marin LE, Suarez G, Quezada JM, Spudis PD, Urrutia-Fucugauchi J (1993) Chicxulub multiring impact basin: size and other characteristics derived from gravity analysis. Science 261:1564–1567
  • 43. Snyder DB, Hobbs RW (1999) Deep seismic reflection profiles across the Chicxulub crater. In: Large meteorite impacts and planetary evolution. Geological Society of America, Special Paper, 339:263–268
  • 44. Taner MT, Sheriff RE (1977) Application of amplitude, frequency and other attributes to stratigraphic and hydrocarbon determination. In: Payton CE (ed) Applications to hydrocarbon exploration, AAPG Memoir, vol 26. American association of petroleum geologists, Tulsa, pp 301–327
  • 45. Taner MT, Koehler F, Sheriff RE (1979) Complex seismic trace analysis. Geophysics 44(6):1041–1063
  • 46. Taner M, Schuelke JS, O’Doherty R, Baysal E (1995) Seismic attributes revisited: society of exploration geophysicists expanded abstracts. SEG Technical Program and Expanded Abstracts 1994, pp 1104–1106. https://doi.org/10.1190/1.1822709
  • 47. Ulrych T, Sacchi M, Graul M, Taner MT (2007) Instantaneous attributes: the what and the how. Explor Geophys 38(4):213–219
  • 48. Urrutia-Fucugauchi J, Pérez-Cruz L (2009) Multiring-forming large bolide impacts and evolution of planetary surfaces. Int Geol Rev 51:1079–1102
  • 49. Urrutia-Fucugauchi J, Marin L, Trejo A (1996) UNAM scientific drilling program of Chicxulub impact structure—evidence for a 300 kilometer crater diameter. Geophys Res Lett 23:1565–1568
  • 50. Urrutia-Fucugauchi J, Morgan J, Stoeffler D, Claeys P (2004) The Chicxulub scientific drilling project (CSDP). Meteorit Planet Sci 39:787–790
  • 51. Urrutia-Fucugauchi J, Chavez JM, Pérez-Cruz L, de la Rosa JL (2008) Impact ejecta and carbonate sequence in the eastern sector of Chicxulub crater. Comptes Rendus Geosci 340:801–810. https://doi.org/10.1016/j.crte.2008.09.001
  • 52. Urrutia-Fucugauchi J, Camargo-Zanoguera A, Pérez-Cruz L, Pérez-Cruz G (2011) The Chicxulub multiring impact crater, Yucatan carbonate platform, Mexico. Geofisica Int 50:99–127
  • 53. Vermeesch PM, Morgan JV, Christeson GL, Barton PJ, Surendra A (2009) Three-dimensional joint inversion of travel and gravity data across the Chicxulub impact crater. J Geophys Res 114:BO2105. https://doi.org/10.1029/2008JB0057765
  • 54. Whalen M, Gulick S, Pearson Z, Norris RD, Pérez-Cruz L, Urrutia-Fucugauchi J (2014) Annealing the Chicxulub impact: paleogene Yucatán carbonate slope development in the Chicxulub impact basin, Mexico. Soc Sediment Geol Spec Publ 105:282–304. https://doi.org/10.2110/sepmsp.105.0
  • 55. White RE (1991) Properties of instantaneous seismic attributes. Lead Edge 7:26–32
  • 56. Xia K, Ahrens TJ (2001) Impact induced damage beneath craters. Geophys Res Lett 28:3525–3527
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36d755e4-cc06-4079-8657-c9bfcd873e5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.