PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Chronology for Historical Mining Shaft Remains in the Vicinity of Tarnowskie Góry Based on Radiocarbon, Luminescence and Dendrochronological Dating

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focused on determining the age of sediments found in the remains of historical mining in the post-exploitation field in Tarnowskie Góry, Poland. The limited historical sources indicated that lead ore and silver were mined there from the 12th to 20th centuries. The research utilised radiocarbon dating, optically stimulated luminescence (OSL) and fallout radioisotopes analysis to establish a chronology of the mining remains. Excavations were conducted on three historical mining shafts. In one of them, remains of old construction wood were found. Radiocarbon dating yielded 12 results, with the majority falling within the range of 1435 cal AD to 1645 cal AD. Two results were significantly older and covered the period of the beginnings of the Polish State. OSL dating provided results ranging from 2.5 ka BP to 216 ka BP, a time range much older than that indicated by radiocarbon dates. The OSL ages were found to be greatly overestimated, indicating that the luminescence signal was not reset during the redeposition of sediments. While the obtained results provided a preliminary chronology of the study site, further detailed research, especially regarding the older samples, is necessary to enhance our understanding of the mining history in the area.
Słowa kluczowe
Czasopismo
Rocznik
Strony
81--90
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, 44-100, Gliwice, Poland
  • Silesian University of Technology, Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, 44-100, Gliwice, Poland
  • Silesian University of Technology, Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, 44-100, Gliwice, Poland
  • Silesian University of Technology, Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, 44-100, Gliwice, Poland
  • University of Silesia, Faculty of Natural Sciences, Institute of Earth Science, 41-200, Sosnowiec, Poland
  • University of Silesia, Faculty of Natural Sciences, Institute of Earth Science, 41-200, Sosnowiec, Poland
  • Silesian University of Technology, Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, 44-100, Gliwice, Poland
  • Silesian University of Technology, Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, 44-100, Gliwice, Poland
  • Academic Secondary School affiliated to Silesian University of Technology, 44-100, Gliwice, Poland
  • Academic Secondary School affiliated to Silesian University of Technology, 44-100, Gliwice, Poland
  • Silesian University of Technology, Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, 44-100, Gliwice, Poland
Bibliografia
  • 1. Aitken MJ, 1985. Thermoluminescence Dating. Academic Press, London: 359pp.
  • 2. Aitken MJ, 1998. An Introduction to Optical Dating. Oxford University Press, Oxford: 267pp.
  • 3. Baillie MGL and Pilcher JR, 1973. A simple crossdating program for tree-ring research. Tree-Ring Bulletin 33: 7–14.
  • 4. Baillie MGL, 1982. Tree-Ring Dating and Archaeology. Routledge Taylor & Francis Group, ISBN 978-1-138-79971-4.
  • 5. Bronk Ramsey C, 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1): 337–360.
  • 6. Bronk Ramsey C, 2021. OxCal 4.4. Electronic programme. Accessed 2023 May 16.
  • 7. De Vries HL and Barendsen GW, 1954. Measurements of age by the carbon-14 technique. Nature 174: 1138–1141.
  • 8. Drabina J. (ed.), 2000. Historia Tarnowskich Gór (History of Tarnowskie Góry). Muzeum w Tarnowskich Górach, ISBN 83-911508-3-6 (in Polish).
  • 9. Eckstein D and Bauch J, 1969. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88: 230–250.
  • 10. Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: part 1, experimental design and statistical models. Archaeometry 41: 339–364.
  • 11. Hollstein E, 1980. Mitteleuropäische Eichenchronologie. Trierer Grabungen und Forschungen, Band XI, Mainz am Rhein, p. 273.
  • 12. Kondracki J, 2013. Geografia regionalna Polski (Regional geography of Poland). Wydawnictwo Naukowe PWN, Warszawa, ISBN 978-83-01-16022-7 (in Polish): 243–247.
  • 13. Mabit L, Benmansour M, Abril JM, Walling DE, Meusburger K, Iurian AR, Bernard C, Tarjan S, Owens PN, Blake WH and Alewell C, 2014. Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: A review. Eart-Science Reviews 138: 335–351.
  • 14. Malik I, Bohr M, Wistuba M, Raab T, Bonhage A, Verschoof-van der Vaart W, Raab A and Woskowicz-Ślęzak B, 2023. Multi-period ore exploitation in Upper Silesia, Central Europe. Journal of Field Archaeology. DOI 10.1080/00934690.2023.2200583.
  • 15. Malik I, Wistuba M, Rutkiewicz P and Pawlak Z, 2022. High concentration of relict mining shafts and relict charcoal hearths as a geomorphological legacy of ancient-modern metallurgy in southern Poland, 10th International Conference on Geomorphology, Coimbra, Portugal, 2022 September 12–16, ICG2022-652, DOI 10.5194/icg2022-652.
  • 16. Markiewicz M and Tomczak E, 2022. The tradition of pottery painting in the Upper Silesian-Lesser Polish regional group of the Lusatian culture in the Early Iron Age. The example of the cemetery at Dobrzeń Mały, Opole district. Praehistorische Zeitschrift 97(1): 195–218.
  • 17. Moska P, Bluszcz A, Poręba G, Tudyka K, Adamiec G, Szymak A and Przybyła A, 2021. Luminescence dating procedures at the Gliwice Luminescence Dating Laboratory. Geochronometria 48(1): 1–15. DOI 10.2478/geochr-2021-0001.
  • 18. Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57–73.
  • 19. Nemec M, Wacker L and Gäggeler HW, 2010. Optimisation of the graphitisation process at AGE-1. Radiocarbon 52(3): 1380–1393.
  • 20. Nowak J, 1927. Kronika miasta i powiatu Tarnowskie Góry (Chronicle of the city and county of Tarnowskie Góry). Księgarnia Polska J. Nowaka, ISBN 9788393410798 (in Polish).
  • 21. Opała M and Mendecki MJ, 2014. An attempt to dendroclimatic reconstruction of winter temperature based on multispecies tree-ring widths and extreme years chronologies (example of Upper Silesia, Southern Poland). Theoretical and Applied Climatology 115: 73–89.
  • 22. Poręba G, Tudyka K, Walencik-Łata A and Kolarczyk A, 2020. Bias in 238U decay chain members measured by γ-ray spectrometry due to 222Rn leakage. Applied Radiation and Isotopes 156: 108945.
  • 23. Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23(2–3): 497–500.
  • 24. Reimer PJ, Austin WEN, Bard E, Bayliss A, Blackwell PG, Bronk Ramsey C, Butzin M, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kromer B, Manning SW, Muscheler R, Palmer JG, Pearson C, van der Plicht J, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, Wacker L, Adolphi F, Büntgen U, Capano M, Fahrni SM, Fogtmann-Schulz A, Friedrich R, Köhler P, Kudsk S, Miyake F, Olsen J, Reinig F, Sakamoto M, Sookdeo A and Talamo S, 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4): 725–757.
  • 25. Rinn F, 2010. TSAP-Win: Time Series Analysis and Presentation for Dendrochronology and Related Applications. User reference. Heidelberg, Germany. WEB site: http://www.rimatech.com. Accessed 2023 May 9.
  • 26. Rozmus D, 2023. 20 years of research on the beginnings of early medieval mining and metallurgy of lead and silver in Poland/20 Jahre Forschung zu den Anfängen des Bergbaus und der Verhüttung von Blei und Silber in Polen. In: Biermann F, Kieseler A, Pernicka E, von Richthofen J, eds., Habelt Verlag Frumittelalterlichen Hacksilber im norlichen westslwischen Raum. Archeologie und Archeolaometallurgie. Herausgegeben, Bonn: 175–200.
  • 27. Synal HA, Stocker M and Suter M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 259(1):7–13.
  • 28. Tudyka K, Koruszowic M, Osadnik R, Adamiec G, Moska P, Szymak A, Bluszcz A, Zhang J, Kolb T and Poręba G, 2023. μRate: an online dose rate calculator for trapped charge dating. Archaeometry 65(2): 423–443.
  • 29. Tudyka K, Miłosz S, Adamiec G, Bluszcz A, Poręba G, Paszkowski Ł and Kolarczyk A, 2018. μDose: A compact system for environmental radioactivity and dose rate measurement. Radiation Measurements 118: 8–13. DOI 10.1016/j.radmeas.2018.07.016.
  • 30. Wacker L, Nemec M and Bourquin J, 2010. A revolutionary graphitisation system: Fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8): 931–934.
  • 31. Wigley TML, Jones PD and Briffa KR, 1987. Cross-dating methods in dendrochronology. Journal of Archaeological Science 14(1): 51–64.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36d718f0-4ab0-4d27-b51d-a4312fc06b10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.