PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling the Impact of Riparian Vegetation on Flow Structure and Bed Sediment Distribution in Rivers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of instream vegetation growth has largely been ignored by hydrological and geomorphological research in river environments, which focused instead on the function of riparian vegetation as a regulator of bank stability or as a buffer for dissolved and particulate matter entering the channel from the hillside. However, in many lowland streams, instream vegetation can be very intensive, resulting in high biomass levels during the growing season. Instream plants have a significant influence on the dynamics of flow, sediment, and nutrients. Plant growth can cause increased frictional resistance to flow and can have a short-to medium-term effects on the geomorphology of the channel. Additionally, plant development influences the velocity of river flow, affects sedimentation dynamics and increases flood risk. To achieve a balance between flooding and ecological management of rivers in the presence of vegetation, a reliable method is required to predict the resistance of channels. In the current study, a two-dimensional hydrodynamic and morphodynamic model is developed and applied using a new scaling expression of shear stress based on vegetation characteristics. These first attempts at field simulations showed qualitatively acceptable results and demonstrated the effectiveness of the model in predicting hydraulic parameters in the presence of vegetation. This model is useful in predicting the effect of vegetation on stream flow and river morphology, as well as in managing flood hazards and stream ecology.
Słowa kluczowe
EN
Twórcy
  • Regional Commissariat for Agricultural Development of Kebili; Salah Ben Youssef Street, 4200 Kebili, Tunisia
  • Laboratory of Water Sciences and Technology; 43 Street of Charles Nicolle 1028 Tunisia
Bibliografia
  • Arellano D., Stark T. D. (2000) Importance of three-dimensional slope stability analysis in practice, [In:] Griffiths et al (Eds.), Slope Stability 2000, GSP 101, Reston, ASCE, 18–32.
  • Allain Jégou C. (2002) Vegetation, flow and sediment transport interactions in rivers beds: Study of the Isere in Gresivaudan (Relations végétation, écoulement-transport solide dans le lit des riviéres, étude de l’Isére dans le Grésivaudan), PhD Thesis, National Polytechnic Institute of Grenoble, France.
  • Augustijn D. C. M., Huthoff F., van Velzen E. H. (2008) Comparison of vegetation roughness descriptions, Proceedings of River Flow – Fourth International Conference on Fluvial Hydraulics, 3–5 September 2008, C¸ es¸me, Izmir, Turkey, 343–350.
  • Baptist M. J., Babovic V., Rodríguez Uthurburu J., Keijzer M., Uittenbogaard R. E., Mynett, A.Verwey A. (2007) On inducing equations for vegetation resistance, Journal of Hydraulic Research, 45, 435–445, https://doi.org/10.1080/00221686.2007.9521778.
  • Ben Mammou A., Louati, M. H. (2007) Temporal evolution of siltation of dams in Tunisia (Évolution temporelle de l’envasement des retenues de barrages de Tunisie), Rev. Sci. Eau, 20, 201–210, https://doi.org/10.7202/015813ar.
  • Carollo F. G., Ferro V., Termini D. (2005) Flow resistance law in channels with flexible submerged vegetation, Journal of Hydraulic Research, 131, 554–564, https://doi.org/10.1061/(asce)0733-9429(2005)131:7(554).
  • Dumas D. (2008) Erosion assessment of an alpine river: the Isère in Grenoble, France (Bilan d’érosion d’un cours déau alpin: l’Isére è Grenoble (France)), Z. Geomorphol., 52, 85–103, https://doi.org/10.1127/0372-8854/2008/0052-0085.
  • Fehri N. (2014) The worsening of the flood risk in Tunisia: Food for thought (L’aggravation du risque d’inondation en Tunisie: éléments de réflexion), Physio-Géo, 8, 149–175, https://doi.org/10.4000/physio-geo.3953.
  • Ghisalberti M., Nepf H. (2002) Mixing layers and coherent structures in vegetated aquatic flows, Water Resources Research, 34, 2341–2352, https://doi.org/10.1029/2001JC000871.
  • Hammami S. (2010) Hydrodynamique Fluviale de la Medjerda, Master of Hydrodynamics and Modeling of Coastal Environments, National Engineers School of Tunis, Tunisia.
  • Hardly R., Bates P., Anderson M. (1999) The importance of spatial resolution in hydraulic models for floodplain environments, Journal of Hydrology, 216, 124–136, https://doi.org/10.1016/s0022-1694(99)00002-5.
  • Horritta M., Batels P. (2002) Evaluation of 1D and 2D numerical models for predicting river flood inundation, Journal of Hydrology, 268, 87–99, https://doi.org/10.1016/s0022-1694(02)00121-x.
  • Huthoff F., Augustijn D. C. M., Hulscher M. H. (2007) Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation, Water Resource Research, 43, W06413: 1–10, https://doi.org/10.1029/2006WR005625.
  • Jarvela J. (2005) Effect of submerged flexible vegetation on flow structure and resistance, Journal of Hydrology, 307, 233–241, https://doi.org/10.1016/j.jhydrol.2004.10.013.
  • Jaziri B. (2009) The bio and the dam, riparian vegetation and hydraulic development (open water, constrained water), structure, functionality, representations in three rivers of northern Tunisia (Le bio et le barrage, végétation riveraine et aménagement hydraulique (eau libre, eau contrainte), structure, fonctionnalité, représentations dans trois cours d’eau de la Tunisie septentrionales), PhD Thesis in Physical Geography, Higher Normal School of Lyon, France.
  • Jourdain C. (2017) Flood action on sediment and plant dynamics in a pebble river bed: Isére en Combe de Savoie (Action des crues sur la dynamique sédimentaire et végétale dans un lit de riviére a galets: l’Isére en Combe de Savoie), PhD Thesis, University Grenoble Alpes.
  • Klopstra D., Barneveld H. J., Van Noortwijik J. M., Van Velzen E. H. (1997) Analytical model for hydraulic roughness of submerged vegetation, Proceedings of the 27th Conference of the International Association for Hydraulic Research, San Francisco, New York, ISBN 90-77051-03-1: 775-780.
  • Kubrak E., Kubrak J., Rowinski P. M. (2008) Vertical velocity distributions through and above submerged flexible vegetation, Hydrological Sciences Journal, 53, 905–920, https://doi.org/10.1623/hysj.53.4.905.
  • Liu C., ShenY. (2008) Flowstructure and sediment transport with impacts of aquatic vegetation, Journal of Hydrodynamics, 20, 461–468, https://doi.org/10.1016/s1001-6058(08)60081-5.
  • Lopez F., Garcia M. H. (2002) Mean flow and turbulence structure of open channel flow through non-emergent vegetation, Journal of Hydraulic Engineering, 127, 392–402, https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(392).
  • Morri M., Soualmia A., Belleudy Ph. (2016) Mean Velocity Predictions in Vegetated Flows, Journal of Applied Fluid Mechanics, 9, 1273–1283, https://doi.org/10.18869/acadpub.jafm.68.228.24221.
  • Nepf H. (1999) Drag, turbulence, and diffusion in flowthrough emergent vegetation. GeophysicalUnion, Water Resources Research, 35, 479–489, https://doi.org/10.1029/1998wr900069.
  • Nepf H., Vivoni E. R. (2000) Flow structure in depth-limited, vegetated flow, Journal of Geophysical Research: Oceans, 105, 2547–2557, https://doi.org/10.1029/2000JC900145.
  • Righetti M., Armanini A. (2002) Flow resistance in open channel flows with sparsely distributed bushes, Journal of Hydrology, 269, 55–64, https://doi.org/10.1016/s0022-1694(02)00194-4.
  • Rodrigues S., Bréhéret J. G., Macaire J. J., Moatar F., Nistoran D., Jugé Ph. (2006) Flow and sediment dynamics in the vegetated secondary channels of an anabranching river: The Loire River (France), Sediment Geology, 186, 1089, https://doi.org/10.1016/j.sedgeo. .2005.11.011.
  • Samani J. M. V., Mazaheri M. (2009) An Analytical Model for Velocity Distribution in Transition Zone for Channel Flows over Inflexible Submerged Vegetation, Journal of Agricultural Science and Technology, 11, 573–584, http://journals.modares.ac.ir/article-23-6634-en.html.
  • Tsujimoto T., Okada T., Kitamura T. (1993) Turbulent flow over flexible vegetation covered bed in open channels, KHL progressive report 1, Kanazawa University, Kanazawa, Japan.
  • Van Rijn L. C. (1984) Sediment transport - Part I: Bed load – Part II: Suspended load, J. of Hydraulic Division, Proc. ASCE, 110, HY10, 1431–1456, HY11, 1613–1641.
  • Van Rijn L. C. (1993) Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas, Aqua Publications.
  • Villaret V., Hervouet J. M. (2006) Cross-comparison of different approaches for sediment transport by bed load and suspension, Ninth National Days Civil Engineering – Coastal Engineering, National Laboratory of Hydraulics and Environment, 12–14 September 2006, Brest, France, 463–470.
  • Villaret V., Hervouet J. M., Kopmann R., Merkel U., Davies A. G. (2013) Morphodynamic modeling using the Telemac finite-element system, Computers & Geosciences, 53, 105–113, https://doi.org/10.1016/j.cageo.2011.10.004.
  • Wu W., He Z. (2009) Effects of vegetation on flow conveyance and sediment transport capacity, International Journal of Sediment Research, 24, 247–259, https://doi.org/10.1016/S1001-6279(10)60001-7.
  • Zahar Y., Ghorbel A., Albergel J. (2008) Impacts of large dams on downstream flow conditions of rivers: Aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia), Journal of Hydrolology, 351, 318–330, https://doi.org/10.1016/j.jhydrol.2007.12.019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36d59aa0-4571-4e0a-a3a1-a04a51e2bed9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.